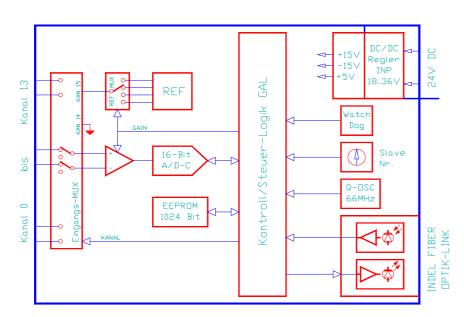

Balz-ADC



Die Balz-ADC Karte ist das Messglied für die präzise Erfassung von analogen Grössen.

Bis zu 14 Spannungen oder Temperaturen können mit einer ADC-Karte erfasst werden.

Ein Hauptvorteil der Karte liegt in der freien Handhabung der Kanal-Konfiguration. Jeder Kanal kann für einen beliebigen Bereich und eine beliebige Messung softwaremässig konfiguriert werden. Volt, Temperatur oder Ausgleichselemente werden von der Karte unterstützt.

Vier Präzisionswiderstände, deren Eigenschaften im karteneigenen EEPROM gespeichert wurden, sind für den automatischen Nullpunkt- und Fullscale- Abgleich eingebaut. Das Betriebssystem korrigiert mit Referenz-Messungen und den EEPROM-Daten automatisch Offset- und Gain Drift für alle Messwerte.

Strom Spannung Temperaturen

Technische Daten

Messkanäle

- 14 analoge Messkanäle
- AchtMessbereiche:
 ±10V, 10V ... ±20mV, 20mV
- Verstärkung x1,x10,x100,x500

Auflösung

- Wahlweise 14 ... 16 Bit
- Auflösung: 1/65'000 vom Messbereich bei 16Bit

Referenz

- Automatischer Abgleich von Nullpunkt und Fullscale

Filterung

- Einstellbarer 50/60Hz Filter

Kartenspeisung

- Galvanisch getrennt
- Speisung 18 ... 36V, 140mA max.

Bestell-Nr. Balz-ADC 609826000

Analog/Digital Konverter

Funktion

Eine Messung läuft in zwei Phasen ab: In der ersten Phase wird der Kanal während einer konfigurierbaren Einschwingzeit aufgeschaltet. Transiente Vorgänge werden in dieser Phase abgeschlossen. In der zweiten Phase wird die analoge Grösse während der einstellbaren Messzeit gemessen.

Die Messzeit pro Kanal ist gemäss folgender Tabelle einstellbar.

Auflösung: Messzeit: 16Bit 50, 60, 80ms 15Bit 25, 30, 40 14Bit 12.5, 15, 20

Für die Einschwingzeit können Werte zwischen 2... 99ms angegeben werden. Gemessen wird mit einem integrierenden Verfahren, sodass Störungen z.B. vom Netz (50/60Hz) herausgefiltert werden können. Die Messung dauert pro Kanal standardmässig 100ms.

Der Feldbusmaster misst automatisch alle gewählten Kanäle, korrigiert Offset und Verstärkung und rechnet ihn in die gewünschte Einheit um.

Temperaturen werden mit der Ausgleichstemperatur (Festwert oder von Ausgleichselement) kompensiert, linearisiert und direkt in Grad Celsius umgerechnet.

Die aufbereiteten Messwerte werden im Dualport RAM des Feldbusmasters abgelegt und können von dort aus weiterverwendet werden.

Die Kanäle 15 und 16 sind mit hochpräzisen Referenzwiderständen bestückt. Im Betrieb misst sie der INFO-Master automatisch mit und korrigiert damit den Offset- und Gain-Drift.

Sämtliche Abgleiche sind während der Qualitätskontrolle bei INDEL vorgenommen worden. Die Werte sind in einem EEPROM, das sich auf der Karte befindet, abgelegt. Auf der Karte befinden sich keine Potentiometer, es kann nichts abgeglichen oder verstellt werden!

Weitere Angaben finden Sie in der Software Betriebsanleitung im INFO-Ordner.

Stecker-Belegungen

1	+V0
1 1	
2	-V0
3	Shield
1	
4	+V1
5	-V1
1 2 3 4 5 6 7	Shield
O	
7	+V2
R	-V2.
8	• –
9	Shield
10	+V3
11	-V3
12	Shield
13	+V4
14	-V4
15	Shield
16	+V5
17	-V5
18	Shield
19	+V6
20	-V6
21	Shield
22	+V7
23	-V7
	• •
24	Shield

Stecker	X35
stehend	

25 26 27
28
29
30
31
32
33 34
35
36
37
38
39
40
41
42

Stecker X36

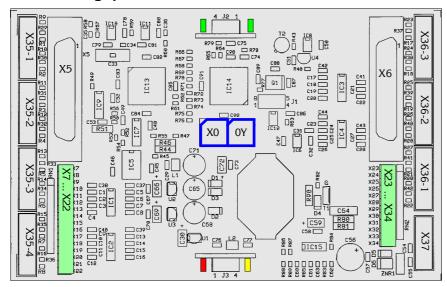
stehend

	_	44
	_	45
	0V	46
	24V	47
I	Erde	48

Stecker X37 stehend

1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24 25	+V0 +V1 +V2 +V3 +V4 +V5 +V6 +V7 -V1 -V2 -V3 -V4 -V5 -V6 -V7 -
--	--

Stecker X5 stehend


1	+V8
1 2	+V9
3	+V10
4 5	+V11
	+V12
2	
6	+V13
7	_
8	
	_
14	-V8
15	-V9
16	-V10
17	-V11
18	-V12
19	-V13
20	V 15
	_
21	_
22	_
23	_
24	_
	_
25	_

Stecker X6 stehend

Bestückung

Bestückungsplan

Adressierung (blau)

S2 (X0)	S1 (0Y)	Karte
0	0	0
•••	•••	•••
F0	0F	255

Jumper (grün)

Die Jumper beeinflussen die Leuchtstärke der Sende-LED und damit die Segmentlänge des Fiberkabels bis zur nächsten Karte.

Segment-Länge	Jumper-Position
0 10m	kein Jumper
8 30m	>10
20 50m	>30

LEDs am Receiver Modul

LED-Rot = +5VSpeisung

LED-Gelb = INFO-Link Receiver-Signal OK

Temperatur-Fühler

Тур	Handelsname	
Cu-CuNi	Cu-Konst	
Cu-CuN	Cu-Konst	
Fe-CuNi	Fe-Konst	
Fe-CuNi	Fe-Konst	
NiCr-Ni	Chromel-Alumel	
NiCr-Ni	Chromel-Alumel	
PtRh-Pt	Platin-Rhodium	

Die nebenstehenden Thermo-Elemente werden direkt an die Balz-ADC angeschlossen. Das Betriebssystem linearisiert sie automatisch. Mischbestückungen mit beliebigen, verschiedenen Typen sind möglich.

Spezifikationen

Kartenspeisung

- +18 ... 36V, 140mA max.
- galvanisch getrennt

Lager- Betriebs-Temperatur

-20 ... +80 / 0 ... +70 °C

Messbereiche, Auflösung

 14 unabhängige Messkanäle Jeder Kanal kann beliebig konfiguriert werden.

Auflösung in µV:

	Bereich	16Bit	15Bit	14Bit
-	010V	150	300	600
-	01V	15	30	60
-	00,1V	1.5	3	6
-	020mV	0.3	0.6	1.2
-	$\pm 10V$	300	600	1200
-	± 1V	30	60	120
-	$\pm 0.1V$	3	6	12
-	$\pm 20 \text{mV}$	0.6	1.2	2.4

Messzeit, Auflösung

Auflösung Messzeit pro Kanal - 16Bit 80, 60 oder 50ms - 15Bit 40, 30 oder 25ms - 14Bit 20, 15 oder 12.5ms

- plus Einschwingzeit: 2 ... 99ms pro Kanal.

Genauigkeit und Drift

- <0.02% vom Messbereich bei 25 Grad Umgeb. Temp.
- Drift: 30ppm/Grad Aenderung der Umgeb. Temp.

Aufwärmzeit

 Nach 15min Einschaltdauer ist die optimale Stabilität der Messwerte erreicht.

Anschluss

- Differential-Eingänge

Montage

- Stecker DIN 41612, Typ F-48
- Montage auf 35mm DIN-Schiene
- 105 x 165 x 45mm (BxTxH)

Balz-ADC

Analog/Digital Konverter

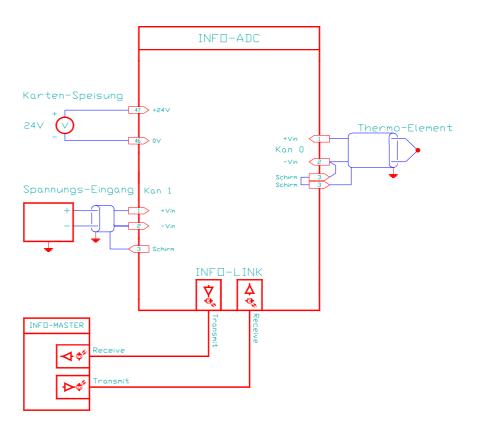
Anschlüsse

Karten-Speisung

Für die Kartenspeisung reicht ein 3-Phasen-Gleichrichter ohne Elko aus. Um Störungen zu vermeiden, wird jedoch ein Elko von $4'700 \dots 10'000 \mu F$ empfohlen.

Geschirmte Leitungen

Sämtliche analogen Signalleitungen sind mit geschirmten Leitungen zu verlegen. Der Schirm muss beidseitig aufgelegt werden.


Um ungewollte Ableitströme über die Schirmungzuvermeiden, muss gegebenenfalls ein Potentialausgleichsleiter vorgesehen werden, insbesondere bei grösseren Distanzen.

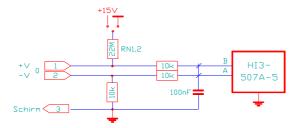
Erdung

Die Erdung der Balz-ADC erfolgt über das Gehäuse. Es ist darauf zu achten, dass die Montageschiene sehr guten Kontakt zur Montageplatte oder zum Chassis hat, damit die Störungen abfliessen können.

Siehe auch INDEL-Verdrahtungsrichtlinie und INDEL-Aufbaurichtlinie.

Anschluss-Beispiel

Benutzerspezfische Modifikationen sind jederzeit erhältlich.

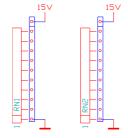

Analog/Digital Konverter

Balz-ADC

Schnittstellen

Beschaltung

Analoge Eingänge


Eingänge

Beschaltung der analogen Eingänge. Die Fühler werden direkt an Pin $\pm V$ angeschlossen.

Die Anzahl der Eingänge sollte in der Konfiguration der Karte begrenzt werden, sodass keine offenen Eingänge vorhanden sind.

Die Eingänge können mit den Widerstandarrays RN1,2 wahlweise auf Gnd oder +15V gezogen werden. Damit sind sie immer in einem definierten Zustand, auch wenn sie offen sind. Standardmässig ist RN nicht bestückt

Widerstandarray-Bestückung

Eingangsleitungen $\pm V$ gegen Gnd beschaltet. RN1,2 = $22M\Omega$