GIN-HEAT INFO-HEAT

Heizregler Temperatur-Profile mit Safety

Technische Daten

Analoge Eingänge

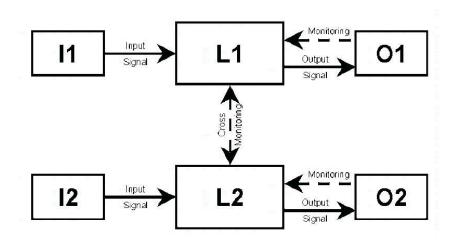
- 16 analoge Eingänge für PT100 oder Thermoelemente
- 2 schnelle analoge Eingänge

Digitale I/Os

- 20 digitale 24V Eingänge
- 20 digitale 24V Ausgänge

Safety

- 2 unabhängige Instanzen
- 2 Abschaltpfade
- 3 redundante analoge Eingänge
- 6 digitale 24V Eingänge
- 4 digitale 24V Ausgänge
- 2 x Open-KollektorAusgänge


Heizregler mit bis zu 16 unabhängigen Heiz-Kanälen.

Mit jedem Kanal können Temperaturprofile gefahren werden. Die Leistung wird extern mit Solid-State Relais bzw.

Schützen geschaltet.

Der Heizregler ist mit Safety-Funktionalität ausgestattet: Zwei unabhängige Instanzen erfassen die Isttemperaturen. Beide Instanzen können unabhängig die Energie abschalten. Die Ergebnisse beider Instanzen werden ständig miteinander verglichen. Bei Unstimmigkeiten oder Übertemperatur wird sofort abgeschaltet. Der Heizregler entspricht den Normen:

EN 954-1, Kategorie 3 und EN ISO 13849-1, PerformanceLevel d

Heater-Board

Speisungen

Montage

Logik-Speisung 24V DC

- Betriebsspannung:

24V DC +10%, -5%

 Stromverbrauch: ...mA @24VDC ohne Anschlussboard, ohne Lasten

- +24V: X1: a1, b1, c1 - Gnd: X1: c4..c11

Speisung Ausgänge 24VDC

 Alle Angaben ohne Anschlussboard, ohne Lasten

Betriebsspannung:

24V DC +10%, -5%

+24VDO0 X1: a2, b2, c2

Out 0 ... 15

Stromverbrauch: ...mA @24VDC

+24VDO1 X1: a3, b3

Out 16 ... 19

Stromverbrauch: ...mA @24VDC

+24VDO2 X1: a3, b3
 sOut 0 ... 3 (SafetyAusgänge)
 Stromverbrauch: ...mA @24VDC

- Gnd: X1: c4..c11 - Maximaler Laststrom: 10A

- Maximaler Laststrom:

inkl. Safety

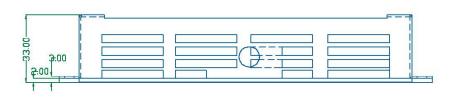
Zuführung min.: 1.5mm2

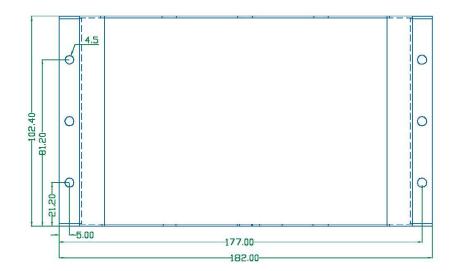
3.3V Speisung

 Speisung für Logik auf dem Anschlussboard

Spannung: 3.3V;±5% max. Strom: 10 mA

±15V Speisung


Diese Speisungen sind nur für den Betriebeines Anschlussboards bestimmt. Sie dürfen nicht extern verdrahet oder belastetwerden!


- Spannung: ±15V;±15% max. Strom: 50 mA

±5V Speisung

Diese Speisungen sind nur für den Betriebeines Anschlussboards bestimmt. Sie dürfen nicht extern verdrahet oder belastetwerden!

- Spannung: ±5V;±5% max. Strom: 100 mA

Höhe über alles mit Steckern, ohne Verkabelung:

Stecker auf INFO-HEAT

Stecker X1, X3

Stecker in Einpresstechnik

Harting: 0973 196 6904 male

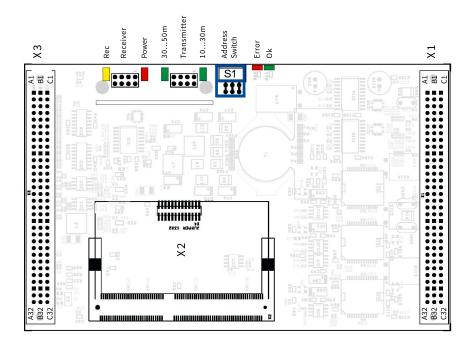
Klimatische Bedingungen Umgebungstemperatur:

- Lager: -20...+80°C - Betrieb: 0 ...+45°C

Kartentemp.Betrieb: 0...+70 °C

Relative Luftfeuchtigkeit

keine Kondensation: 80% Schutzart IP-20


Verschmutzungsgrad:2(EN50178)

50mm

GIN-HEAT INFO-HEAT

Bestückung

Adressierung (blau)

S1 Low	0x00	0x01	0x02	0x03	0x04
DigitalOutput DigitalInput Analog Input	0 15	32 47 32 47 32 47			

LEDs am Receiver Modul

Power = +5V Speisung

Rec = INFO-LinkReceiver-SignalOK

Sendeleistungs-Jumper (grün)

Die Jumper beeinflussen die Leuchtstärke der Sende-LED und damit die Segmentlänge des Fiberkabels bis zur nächsten Karte.

Segment-Länge	Jumper-Position
0 10m	keinJumper
8 30m	1030 m
20 50m	3050 m

RS232-Schnittstelle

DieKommunikation mit dem Regler erfolgt entweder über den INFO-Link oder über die RS232-Schnittstelle mitHilfe des Programmes ACS-Show. (RS-232 Stecker auf Anschlussboard)

Spezifikationen

Abtastrate

Abtastrate: 1 ... 4kHz

Digitale Ausgänge

- 20 Ausgänge 24 V
- 1 A dauernd
- Kurzschlussfest

Digitale Eingänge

- 20 Eingänge 24V
- Pegel für logisch 1 min. 13.2V
 Pegel für logisch 0 max. 5.4 V
 Eingangsimpedanz 26.7 kOhm

Analoge Eingänge

- 16 Kanäle ±10V,±1V,±0.1V
- Thermocouple:

T, U, J, L, E, K, B, E, R, N

- 16 StromquellenfürPT-100
- Wandler-Zeit/Kanal 250µs (alleKanäle brauchen 4ms)
- Konfigurierbares Mittelwert-Filter
 1 ... 256 Werte
- relativeGenauigkeit
 15-BitMittelwert256 Messwerte
 12-Bitohne Mittelwertbildung

Analoge Eingänge (fast)

2 Kanäle ±10 V Wandler-Zeit 250 µs Auflösung 16 Bit

- relative Genauigkeit

15-Bit Mittelwert 256 Messwerte 12-Bit ohne Mittelwertbildung

Konfigurierbares Mittelwert-Filter
1 ... 256 Werte

Aufwärmzeit

 Nach 15min Einschaltdauer ist die optimale Stabilität der Messwerte erreicht. Die Spezifikationen der Genauigkeit gelten beiBetriebstemperatur.

Heater-Board

Spezifikationen

Kühlung

Die Kühlung der Heater-Boards erfolgt über die Alu-Bodenplatte. Diese muss grossflächig auf einer Montage-Platte montiert werden, damit die Wärme abgeführt werden kann.

Je nach Einbauart, z.B. wenn das Heater-Board in einem Schaltschrank montiert wird, muss mit Ventilatoren die Abwärme aus dem Schrank befördert werden.

Filter

Die 24V-Einspeisungen müssen mit einem Filter versehen werden. Das optimale Filter muss evtl. Mit einer Messung für leitungsgebundene Emission bestimmt werden, da die ausgestrahlten Störungen unter anderem von der Kabellänge abhängig sind.

Erdung

Die Erdung der Heater-Boards erfolgt über das Gehäuse. Es muss darauf geachtet werden, dass das Gehäuse gut leitend mit der Montageplatte verbunden ist. (EMV-und Wärme-Ableitung). Die Sensor-Kabel müssen geschirmt verlegt werden. Die Schirme sind vor dem Board Mit rundum-kontaktierenden Briden zu erden.

Anschlüsse INFO-HEAT

Stecker X3

INFO-HEAT

			а				b				С	
1	0	+	ı	0	1	+	٧	0	1	-	٧	0
2	0	+	ı	1	1	+	٧	1	1	-	V	1
3	0	+	ı	2	1	+	٧	2	1	-	V	2
4	0	+	1	3	1	+	٧	3	1	-	V	3
5	0	+	1	4	ı	+	٧	4	1	-	V	4
6	0	+	ı	5	1	+	٧	5	1	-	V	5
7	0	+	1	6	1	+	٧	6	1	-	V	6
8	0	+	1	7	1	+	٧	7	1	-	V	7
9	0	+	1	8	1	+	٧	8	1	-	V	8
10	0	+	1	9	1	+	٧	9	1	-	V	9
11	0	+	ı	10	ı	+	٧	10	1	-	V	10
12	0	+	I	11	1	+	٧	11	1	-	V	11
13	0	+	I	12	1	+	٧	12	1	-	V	12
14	0	+	ı	13	1	+	V	13		-	V	13
15	0	+	ı	14	1	+	V	14		-	V	14
16	0	+	ı	15	1	+	٧	15		-	V	15
17	0	I_PT 0				PT F		0		PT RO		
18	0	I_PT 1			+	PT F	₹1	0	- F	PT RO)	
19	0		Gn				Ain	0		-	Ain	0
20	0		Gn		1	+	Ain	1	Ι	-	Ain	1
21	0		Gn		0		Gno		0		AGno	
22	0		Gn		0		Gno		0	AGnd		
23	0		Gn		0			0	AGnd		<u></u>	
24	1		Gnd				Gnd		0		Gnd	
25			Gnd		0	_	Gno		0		Gno	
26	0	C_DTR		0	C	_Tx				C_Rx		
27	1	C_DSR		0		Gno				t_Bo		
28	0		CL			B SDA		0	+3.3V			
29	1		EW		0	_		0	SER_Load			
30	0	SEF			0	SER_DMD			SER_DDM			
31	0		15		0	- 15V		0	AGnd			
32	0	+	+5∖		0		- 5V		0		Erde	9

Pin-Out	
+V0 / -V0 +V15 / -V15	Analoge Eingänge differenziell
+ 0 + 15	Stromquelle für PT-100 Sensoren
+ I_PT 0 /+PT R0 /-PT R0	On-BoardPT-100fürKlemmentemp.Messung
+ I_PT 1 /+PT R1 /-PT R1	
AGnd	Analoges Ground
+3.3V	Spannungsversorgung für EEPROM
Gnd	Digitales Ground
SCLA/SDA/EEWC	I2C Bus für EEPROM
C_TxD/C_RxD	Sende-, Empfangs-Leitung von RS232 Schnittstelle
C_DTR/C_DSR	Steuer-Signale von RS232 Schnittstelle
Ext_Board	ErkennungAnschlussboard
SER_CLK	Schieberegister-Clock
SER_Load	Schieberegister-Load
SER_OEN	Schieberegister-Enable
SER_DMD	Daten von Heater-Board -> Anschlussboard
SER_DDM	Daten von Anschlussboard -> Heater-Board
±15V / ±5V / AGnd	Spannungen für analoge Peripherie

GIN-HEAT INFO-HEAT

Stecker-Belegungen

INFO-HEAT

Spezifikationen

Stecker X1

INFO-HEAT

1	0 0 e d d
3	e d d
4 O D_OUT 0 I D_IN 0 I Gno 5 O D_OUT 1 I D_IN 1 I Gno 6 O D_OUT 2 I D_IN 2 I Gno 7 O D_OUT 3 I D_IN 3 I Gno 8 O D_OUT 4 I D_IN 4 I Gno	t t
5 O D_OUT 1 I D_IN 1 I Gno 6 O D_OUT 2 I D_IN 2 I Gno 7 O D_OUT 3 I D_IN 3 I Gno 8 O D_OUT 4 I D_IN 4 I Gno	t t
6 O D_OUT 2 I D_IN 2 I Gno 7 O D_OUT 3 I D_IN 3 I Gno 8 O D_OUT 4 I D_IN 4 I Gno	t
7 O D_OUT 3 I D_IN 3 I Gno 8 O D_OUT 4 I D_IN 4 I Gno	
8 O D_OUT 4 I D_IN 4 I Gnd	.
	j
9 O D OUT 5 I D IN 5 I Gno	t
5 5 5 5 1 5 1 6 1	t
10 O D_OUT 6 I D_IN 6 I Gnd	t
11 O D_OUT 7 I D_IN 7 I Gnd	t
12 O D_OUT 8 I D_IN 8 I D_IN	16
13 O D_OUT 9 I D_IN 9 I D_OUT	16
14 O D_OUT 10 I D_IN 10 I D_IN	17
15 O D_OUT 11 I D_IN 11 I D_OUT	17
16 O D_OUT 12 I D_IN 12 I D_IN	18
17 O D_OUT 13 I D_IN 13 I D_OUT	18
18 O D_OUT 14 I D_IN 14 I D_IN	19
19 O D_OUT 15 I D_IN 15 I D_OUT	19
20 I Gnd I Gnd I Gnd	t
21 O +24VDO 2 O +24VDO 2 O +24VDO	2
22 0 sOC 0 0 sOC 0 0 sOC	0 0
23 O +24VDO 2 O +24VDO 2 O +24VDO	2
24 0 sOC 1 0 sOC 1 0 sOC	
25 O +24VDO 2 O +24VDO 2 O +24VDO	2
26 O SOUT 0 O SOUT 1 O SIN	0
27 O SOUT 2 I SOUT 3 I SIN	1
28 I SIN 2 I SIN 3 I SIN	4
29 O SCLAS B SDAS I SIN	5
30 I Gnd I +3.3V	
31 I + sAin 0 I + sAin 1 I +sAin	2
32 I -sAin 0 I -sAin 1 I -sAin	2

Potentialausgleich

Alle Schirme immer beidseitig auflegen. Um ungewollte Ableitströme über die Schirmung zu vermeiden, muss gegebenenfalls ein Potentialausgleichsleiter vorgesehen werden, insbesondere bei grösseren Distanzen oder bei verschiedener Einspeisung.

Schirmschiene

Im Schaltschrank muss eine Schirmschiene vorgesehen werden, auf die alle geschirmten Kabel aufgelegt werden.

Metallische Stecker mit rundum Kontaktierung des Schirms eignen sich ebenfalls für die Kabeleinführung.

Weiterführende Dokumentation

Siehe auch INDEL-Verdrahtungsrichtlinie und INDEL-Aufbaurichtlinie.

Pin-Beschreibung	
+24V / Gnd	24V Kartenspeisung, gemeinsames Ground für
	Kartenspeisung und Endstufen (Motoren)
DIN 0 DIN15	Digitale 24V Eingänge
DOUT 0 DOUT 15	Digitale 24V Ausägne, kurzschlussfest
+24V DO 0	Speisung für DOUT 0 15
+24V DO 1	Speisung für DOUT 16 18
sIN 0 sIN 5	Digitale 24V Eingänge für Safety
sOut 0 sOUT 3	24V Ausgänge für Safety, kurzschlussfest
+24V DO 2	Speisung für Safety Ausgänge
SCLA / SDA	I2C Bus für EEPROM (LM75)
sAin 0 sAin 2	Analoge Eingänge für Safety-Thermocouple

IEAT

Blockschaltbild

Heater-Board

Safety

Abtastrate

- Abtastrate: 1 ... 4kHz

Digitale Ausgänge

- 4 Ausgänge 24V, 1A dauernd
- 2 openKollektorAusgänge 24V,
 3.5A dauernd
- Kurzschlussfest

Digitale Eingänge

- 6 Eingänge 24V
- Pegelfür logisch 1 min. 13.2V
 Pegelfür logisch 0 max. 5.4 V
 Eingangsimpedanz 26.7 kOhm

Analoge Eingänge

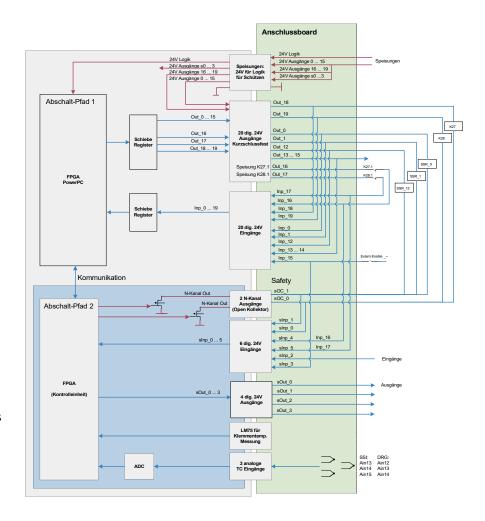
- 3 Thermocouple: Type K
 Wandler-Zeit/Kanal 250µs (alle Kanäle brauchen 1ms)
- Auflösung 16 Bit
 Genauigkeit 10°C
 Abschalttemperatur +520°C

2. Abschaltpfad

Der zweite Abschalt-Pfad schaltet das Ground der Solide State Relais und der Hauptschützen. Beide Open-Kollektor-Ausgänge werden gleichzeitig geschalten.

"Freigabe Testen"

Beim Einschalten werden die Open-Kollektor Ausgänge und die Ausgänge Out_18, Out_19 (Hauptschützen) auf Kurzschlüsse überprüft.


Dieser Test muss während dem Betrieb zyklisch wiederholt werden. Je nach Anwendung, z.B. alle 8 Stunden.

Ausgänge überwachen

Der Status sämtlicher Ausgänge wird über Eingänge rückgeführt und ständig überwacht.

Watch Dog

Der Safety-Teil verfügt über einen eigenenWatch-Dog.

Hilfskontakte

Über die Hilfskontakte (Öffner) der Hauptschützen kann festgestellt werden, ob diese richtig schalten.

Die Signale an den Ausgängen Out 16, Out 17 $\,$ sind zwangsdynamisiert. Die Frequenz beträgt... Hz.

Es können zwei Hauptschützen (in Serie geschalten) mit zwei unabhängigen Ausgängen angesteuert werden.

GIN-HEAT INFO-HEAT

RS232 Schnittstelle

Ein- und Ausgänge

Beschaltung

RS 232 Schnittstelle aufSteckerX3			Kabel	9-Pol-Stecker PC, Laptop
b26 c26 a26 a27 b27	TxD RxD DTR DSR Gnd	Ausgang Eingang Ausgang Eingang	→ ← → ←	Pin 2 Pin 3 Pin 6 Pin 4 Pin 5

Eingänge

+24V A OUT1 OUT2 OUT3 OUT3 OUT4 18 Dout 1nF

Ausgänge

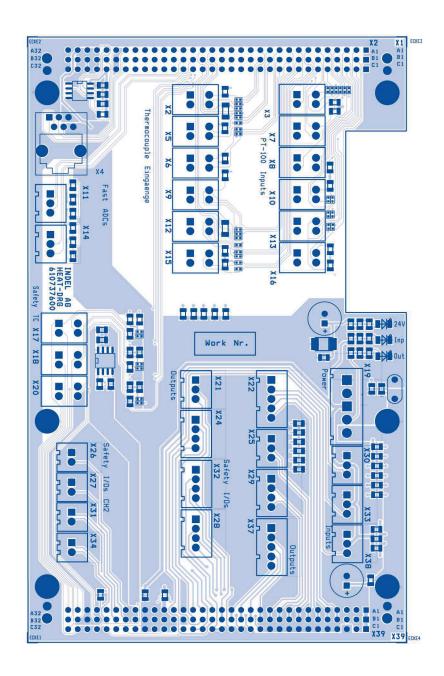
Heater-Board

HEAT-DRG

Anschlussboard

HEAT-DRG

Abschaltpfad 1


- 6 PT-100 Eingänge auf Stecker
 X3, X7, X8, X10, X13, X16
- 6 Thermocouple-Eingänge auf Stecker
 X2, X5, X6, X9, X12, X15
- 2 Fast ADC Eingänge
 Eingangsimpedanz
 Max. Verlustleistung
 X11, X14
- 2 PT-100 Widerstände für Klemmentemperatur-Messsung
- 1 SIO X4
- Speisung X19
- Eingänge
 X30, X33, X38
- Ausgänge
 X21, X22, X24, X25, X29, X37,
 X21
- Safety I/Os von Abschaltpfad 1 X32, X28

Abschaltpfad 2

- Das Anschlussboard HEAT-DRG ist auch mit Safety Funktionalität verfügbar (Bestückungsvariante).
- 3 Thermocouple-Eingänge X17, X18, X19

LM75 für Klemmentemperatur-Messsung

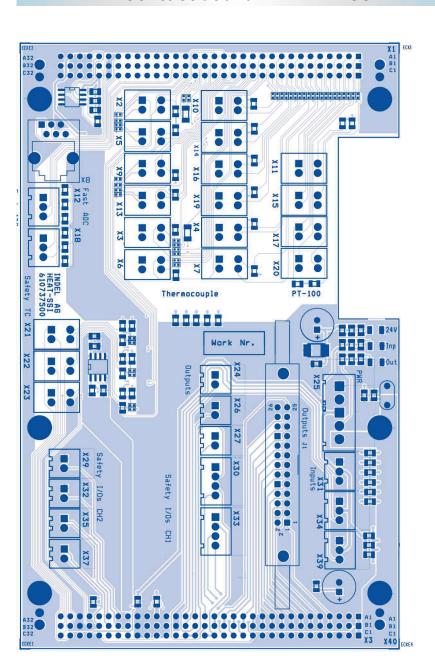
Safety I/Os von Abschaltpfad 2 X26, X27, X31, X34

Hinweise

Die 3 Safety-Thermocouple Eingänge sind standardmässig auf die analogen Eingänge Ain12, Ain13, Ain14 verdrahtet

Der externe Enable ist auf dem Anschlussboard auf Input 15 und auf Input sIn3 verdrahtet.

Das Anschlussboard wird ohne Federleisten geliefert.



GIN-HEAT INFO-HEAT

Anschlussboard

HEAT-SSI

HEAT-SSI

Hinweise

Die 3 Safety-Thermocouple Eingänge sind standardmässig auf die analogen Eingänge Ain13, Ain14, Ain15 verdrahtet

Der externe Enable ist auf dem Anschlussboard auf Input 15 und auf Input sIn3 verdrahtet.

Das Anschlussboard wird ohne Federleisten geliefert.

Abschaltpfad 1

- 4 PT-100 Eingänge auf Stecker
 X11, X15, X17, X20
- 12 Thermocouple-Eingänge auf Stecker
 X2, X3, X5, X6, X9, X13
 X4, X7, X10, X14, X16, X19
- 2 Fast ADC Eingänge
 Eingangsimpedanz
 Max. Verlustleistung
 X12, X18
- 2 PT-100 Widerstände für Klemmentemperatur-Messsung
- 1 SIO X8
- Speisung X25
- Eingänge
 X31, X34, X39
- Ausgänge J1, X24, X26
- Safety I/Os von Abschaltpfad 1 X30, X33

Abschaltpfad 2

- 3 Thermocouple-Eingänge X21, X22, X23

LM75 für Klemmentemperatur-Messsung

 Safety I/Os von Abschaltpfad 2 X29, X32, X351, X37

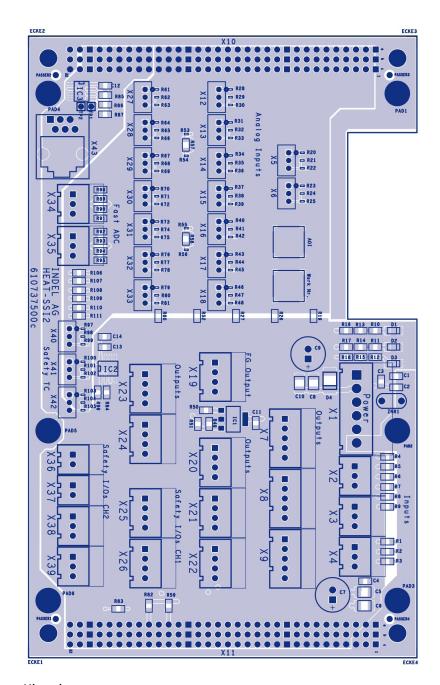
Heater-Board

HEAT-SSI2

Anschlussboard

HEAT-SS12

Abschaltpfad 1


- 2 PT-100 Eingänge aufStecker X5, X6
- 14 Thermocouple-Eingänge auf Stecker
 X12,X13,X14,X15,X16,X17,X18
 X27,X28,X29,X30,X31,X32,X33
- 2 Fast ADC Eingänge
 X34 Spannungsmessung (Ain1):
 +-10V Range
 X35 Strommessung (Ain0):
 Eingangsimpedanz
 250 Ohm
 Max. Verlustleistung
 300 mW
- 2 PT-100 Widerstände für Klemmentemperatur - Messsung
- 1 SIO X8
- Speisung X1
- Eingänge X2, X3, X4
- Ausgänge
 X7, X8, X9, X20, X21, X22, X23, X24
- Forming Gas Output Out15 verknüpft mit 24V_FG X19
- Safety I/Os von Abschaltpfad 1 X25, X26

Abschaltpfad 2

 3 Thermocouple-Eingänge X40, X41, X42

> LM75 für Klemmentemperatur-Messsung

 Safety I/Os von Abschaltpfad 2 X36, X37, X38, X39

Hinweise

Die 3 Safety-Thermocouple Eingänge sind standardmässig auf die analogen Eingänge Ain12, Ain13, Ain14 verdrahtet

Der extern Enable ist auf dem Anschlussboard auf Input 15 und auf Input sin3 verdrahtet.

Das Anschlussboard wird ohne Federleisten geliefert.

GIN-HEAT INFO-HEAT

Anschlussboards

Stecker	Тур	HEAT-DRG	HEAT-SSI	HEAT-SSI2
Klemmenleiste,2.5mm	Wago 233-202	X2,3,5,6,7,8,9,10,12, 13,15,16,17,18,20	X2,3,4,5,6,7,9,10,11, 13,14,15,16,17,19,20, 21,22,23	
Stiftleiste 2-pol,2.5mm Raster Federleiste 2-pol,2.5mm Raster	Wago 733-332 Wago 733-102	X26,27,31,34	X24,26,27,29,32,35,37	X36,37
Stiftleiste 3-pol,2.5mm Raster Federleiste 3-pol,2.5mm Raster	Wago 733-333 Wago 733-103	X11,14,21,25,30,33, 38	X12,18,31,34,39	X2,3,4,34,35,38,39
Stiftleiste 4-pol,2.5mm Raster Federleiste 4-pol,2.5mm Raster	Wago 733-334 Wago 733-104	X24,28,29,32	X30,33	X19,20,21,22,23,24,25, 26
Stiftleiste 5-pol,2.5mm Raster Federleiste 5-pol,2.5mm Raster	Wago 733-335 Wago 733-105	X22,37		X7,8,9
Stiftleiste 5-pol,3.5mm Raster Federleiste 5-pol,3.5mm Raster	Wago 734-135 Wago 734-105	X19	X25	
Stiftleiste 6-pol,2.5mm Raster Federleiste 6-pol,2.5mm Raster	Wago 733-336 Wago 733-106			X1
180° StiftleistemitStandard- Verriegelungshebel, Quickie III	Compona 246 887-0	J1		
Stiftleiste 3-pol,2mm Raster	JST B3B-PH-K- S(LF)(SN)			X5,6,12,13,14,15,16,17, 18,27,28,29,30,31,32,33 ,40,41,42

Artikel-Verzeichnis

Sets Heizregler Grundboard, INFO-Link, inkl. HEAT-DRG Heizregler Grundboard mit Safety, Esart, inkl. HEAT-SSI Heizregler Grundboard mit Safety, GinLink, inkl. HEAT-DRG Heizregler Grundboard mit Safety, GinLink, inkl. HEAT-SSI2	Label HEAT-I HEAT-E2 HEAT-G HEAT-G2	Bestell-Nr. 610838300 610838401-Safety 610838501-Safety 610838502-Safety
Grundboards Heizregler Grundboard, INFO-Link Heizregler Grundboard mit Safety, INFO-Link Heizregler Grundboard mit Safety, Esart2 Heizregler Grundboard mit Safety, GinLink	INFO-HEAT INFO-HEAT INFO-HEAT GIN-HEAT	610737400 610737401-Safety 610737403- Esart2Safety 610737441-Safety
Anschlussboards Anschlussboard DRG Anschlussboard SSI mit Safety Anschlussboard SSI2 mit Safety	HEAT-DRG HEAT-SSI HEAT-SSI2	610737600 610737500-Safety 610737501-Safety

Rev. 2301

Heater-Board

Sicherheitshinweise

Fachpersonal

Nur qualifiziertes Fachpersonal darf Arbeiten wie Transport, Installation, Inbetriebnahme, Konfiguration der Safety-Funktionen und Wartung ausführen.

Dokumentation

Lesen Sie vor der Installation und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben der Module kann zu Personen- oder Sachschäden führen. Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen unbedingt ein.

Bestimmungsgemässer Gebrauch

Die Produkte von Indel AG werden nach dem jeweiligen Stand derTechnik entwickelt und gefertigt. Vor ihrer Auslieferung werden sie auf ihren betriebssicheren Zustand hin überprüft. Die Produkte dürfen nur bestimmungsgemäss eingesetzt werden. Wenn sie nicht bestimmungsgemäss eingesetzt werden, dann können Situationen entstehen, die Sach- und Personenbeschädigung nach sich ziehen.

Wichtig: Für Schäden bei nicht-bestimmungsgemäßem Gebrauch der Produkte leistet Indel AG als Hersteller keinerlei Gewährleistung, Haftung oder Schadensersatz; die Risiken bei nicht-bestimmungsgemäßem Gebrauch der Produkte liegen allein beim Anwender. Bevor Sie die Produkte von Indel AG einsetzen, müssen die folgenden Voraussetzungen erfüllt sein, um einen bestimmungsgemässen Gebrauch der Produkte zu gewährleisten:

- Jeder, der in irgendeiner Weise mit einem unserer Produkte umgeht, muss die entsprechenden Sicherheitsvorschriften und den bestimmungsgemäßen Gebrauch lesen und verstehen.
- Sofern es sich bei den Produkten um Hardware handelt, müssen sie in ihrem Originalzustand belassen werden; d. h. es dürfen keine baulichen Veränderungen an ihnen vorgenommen werden. Softwareprodukte dürfen nicht dekompiliert werden und ihre Quellcodes dürfen nicht verändert werden. Der Anwender ist für dafür verantwortlich, dass die richtige Software Version im Produkt läuft.
- Beschädigte oder fehlerhafte Produkte dürfen nicht eingebaut oder in Betrieb genommen werden.
- Es muss gewährleistet sein, dass die Produkte entsprechend den in der Dokumentation genannten Vorschriften installiert sind.

Inbetriebnahme

Nach der Installation muss der Betreiber die Schaltung der Sicherheitsfunktion prüfen.

Die Funktionsprüfung muss in regelmäßigen Zeitabständen wiederholt werden. Die zu wählenden Zeitabstände sind von der Applikation, dem Gesamtsystem und der damit verbundenen Risikoanalyse abhängig. Das Prüfintervall sollte ein Jahr nicht überschreiten.

GIN-HEAT INFO-HEAT

Sicherheitshinweise

Diese Dokumentation kann nur auf die Notwendigkeit einer Gefahrenanalyse hinweisen. Der Nutzer der integrierten Sicherheitstechnik muss sich intensiv Mit der Normen- und Rechtslage beschäftigen:

Bevor eine Maschine in Verkehr gebracht werden darf, muss der Hersteller der Maschine nach der Maschinenrichtlinie 89/392/EWG eine Gefahrenanalyse durchführen, um die mit dem Einsatz der Maschine verbundenen Gefahren zu ermitteln. Um ein möglichst hohes Mass an Sicherheit zu erlangen, nennt die Maschinenrichtlinie drei Grundsätze:

- Beseitigung bzw. Minimierung der Gefahren durch die Konstruktion selbst.
- Ergreifen der notwendigen Schutzmaßnahmen gegen nicht zu beseitigende Gefahren.
- Dokumentation der bestehenden Restrisiken und Unterrichtung des Nutzers bezüglich dieser Risiken.

Das Ergebnis der Gefahrenanalyse bestimmt die Kategorie für sicherheitsbezogene Steuerungen, der die sicherheitsgerichteten Teile der Maschinensteuerung genügen müssen.

Die Module beinhalten elektrostatisch gefährdete Bauelemente, die durch unsachgemässe Behandlung beschädigt werden können. Entladen Sie Ihren Körper bevor Sie die Module berühren. Vermeiden Sie Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststoffolien, etc.). Legen Sie die Module im spannungslosen Zustand auf eine leitfähige Unterlage.

Mit diesen Sicherheitshinweisen wird kein Anspruch auf Vollständigkeit erhoben.

Bei Fragen und Problemen rufen Sie uns bitte an: Tel. +41 44 956 20 00.

Diese Dokumentation erhebt keinen Anspruch auf Vollständigkeit. Technische Änderungen und Irrtümer werden vorbehalten.

Risiko-Analyse

ESD

Rückfragen

