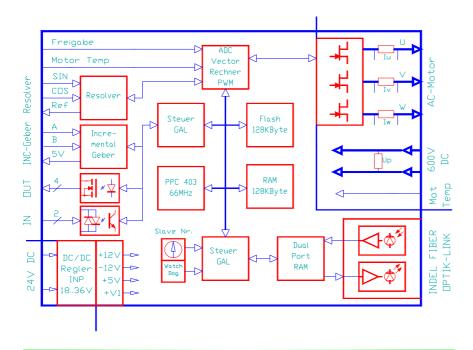
INFO-HCS2r



High-precision and very fast positioning and control tasks are implemented using the Stand Alone Servo-controllers INFO-HCS.

The 3 phase power supply is is done by the INFO-HCP Module. The controller is equipped with a phase monitor. As on all intelligent periphery boards, a PowerPC processor ensures adequate power.

On the HCS Servo-controllers, all offthe-shelf three-phase synchronous and asynchronous motors can be operated, as well as specially developed asynchronous motors for servo-operation.

Three different PID parameter sets and 8 motor configurations are available to users. In addition, up to 6 parameters can be recorded.

Tel. ++41 44/956 20 00 Fax ++41 44/956 20 09 CH-8332 Russikon Tüfiwis 26 AC-Motor-Controller 100% digital

Technical Data

Sampling rate

12kHz (flow, velocity and position control)

Types

- 2.5A/600VDC
- 5A/600VDC
- 16A/600VDC
- 32A/600VDC

Path curves

- S-curve
- ISO-code
- User-specific algorithmen

Resolver input

- 12 ... 16-Bit
- Resolver signal as incremental transmitter output

Incremental input

- RS422 signal, electrically isolated

Motore

- Synchronous three-phase motors
- Asynchronous three-phase motors
- Standard motors

5V Supply

- for incremental transmitter

Order Nr INFO-HCS2r 610535101-2.5A Order Nr INFO-HCS2r 610535102-5A Order Nr INFO-HCS2r 610535100-16A Order Nr INFO-HCS2x 609930200-32A

Functions

Description

Controller types

Four variants of the INFO-HCS are available. In addition to the specified nominal current, the servo-controllers can be operated during 5s with the current I_{MAX5S} .

INFO-HCSr	2.5A	5A	16A	32A*
I _{NENN} I _{MAX 5s} U _{CC}	2.5A _{RMS}	5A _{RMS}	16A _{RMS}	32A _{RMS}
	10A _{RMS}	15A _{RMS}	35A _{RMS}	70A _{RMS}
	565V	565V	565V	565V

Integration in the INFO-Link

*) larger dimensions. The AC servo-controllers are systematically integrated in the INFO-Link. Analog interfaces and asynchronicities between the field bus master and the controller are eliminated. All parameters are read and written via the INFO-Link or via a serial connection using tools and are available throughout the network.

PID parameter sets

The different PID parameter sets are freely available to the user. The parameter sets are simultaneously active, allowing load changes to be optimally accommodated. Example: PID parameter set 1 for upward stroke with load; parameter set 2 for downward stroke without load; parameter set 3 for stand-by with reduced current input. In addition to the PID parameters, it is possible to specify pilot controls (boosters) for velocity and acceleration.

Computing power

The PowerPC 403-66MHz performs the following taks at a clock rate of 12kHz:

- PID position controller, velocity control, active current control
- Power factor compensation
- Encoder correction (incremental transmitter)
- Limitation for: $\boldsymbol{I}_{\text{MAX}}, \ \boldsymbol{I}_{\text{2t}}, \ \text{controller}, \ \text{motor temperatures}$
- Logger of 6 freely selectable parameters such as rotary speed, active current, path error, target/actual velocities, etc.

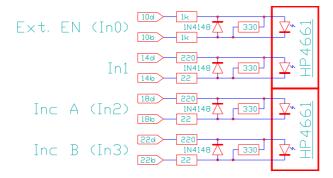
Position registration

Synchronous motors require a resolver for position registration. The resolution of the resolver is 12 ... 16-Bit. 16-Bit precision can only be achieved at standstill. Asynchronous motors require either a resolver or an incremental transmitter for position registration. For uncontrolled rotary speed operation, no actual value registration is necessary.

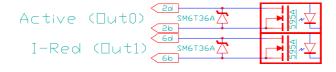
The incremental transmitter may also be used as an additional encoder. The measurement value can if required also be included directly in the control algorithm, or be used as an independent measured variable.

Operational reliability

Various quantities of the AC servo-controller are continuously monitored in order to ensure maximum operational reliability. Short-circuit stoppages prevent shorts to motor or ground. In the individual phases, quick-action current cutouts protect the motor and the output stage. These become active when the drive is jammed or is stopped abruptly. The motor and the output stage are monitored for overtemperature. The motor temperature can be measured as required by means of a bimetal switch (digital) or via an NTC in the motor (voltage value).



Interfaces


RS232 interface

RS 232 Stecker INFO-HCSr		Kabel	9-Pol-Stecker PC, Laptop
Pin-5 GND		Schirm	Pin-5
Pin-2 Rx	Eingang	\leftarrow	Pin-3
Pin-3 Tx	Ausgang	\rightarrow	Pin-2
Pin-6	Eingang	\leftarrow	Pin-4
DSR			
Pin-4 DTR	Ausgang	\rightarrow	Pin-6

Inputs

Outputs

Wiring

RS232 interface

The RS232 interface serves as direct connection of the controllers to the PC.

Incremental transmitter, external zero pulse

Inputs 1..3 are sized for 5V. Input 0 is sized for 24V. This input is reserved for external controller enable and can be included in the EMERGENCY stop circuit.

If the inputs 1...3 are operated with 24V, a series resistor of $1.2k\Omega$ is necessary. Input 1 is reserved for an external zero pulse. The incremental transmitter is connected to the inputs 2,3. Trak A is connected to input 2; Trak B to input 3. The supply of the transmitter is provided by the INFO-HCSr: 5V or 24V. Instead of the incremental transmitter, it is also possible to connect limit switches.

Outputs

The two outputs are reserved for "Motor control active" and "Current reduction active".

Resolver

The resolver positon of the motor is available on the outputs A, B, und NM (connector 32d ... 32z) as an encoder signal. A, B, NM are TTL Signals. (74HC14)

Supply of the incremental transmitter

The DC/DC converter on the board also supplies +5V to the incremental encoder. A special power supply for the transmitter therefore is unnecessary (not electrically isolated from the 24V supply).

Specifications

Climatic conditions Ambient temperature:

- Storage: -20...+80°C - Operation: 0 ... +45°C

- Board temperature:

Operation: 0...+70 °C

Relative air humidity

no condensation: 80% Enclosure IP-20

- Pollution degree: 2 (EN 50178)

Motor

- All types of three-phase motors asynchronous und synchronous

Minimum inductivity: 1mH
 Minimum resistance: 0.2Ω
 Max. motor voltage: 565V

- Max. line length: 20m

 Motor temperature monitoring: bimetal or KTY-84 (NTC) on connector 1, 22z,24z

 Observe voltage resistance of winding

Resolver-Eingänge

- 12 ... 16 Bit Auflösung
- 4Vrms Sinus, Brückenschaltung
- 2Vrms Sin/Cos Input
- Inkrementalgeber-Ausgang: Resolver-Signal als Inkremental-Signal (Ausgang) A,B-Spuren, Nullimpuls: TTL-Pegel (St. 1: 26...32)

Intermediate circuit, brakes

- 565VDC
- Brake-IGBT (PH-4) (refer: INFO-HCPr, HCPx)

Finale Stage

- Loss power (I_{NENN})
INFO-HCSr-2.5A: 30W
INFO-HCSr-5A: 60W
INFO-HCSr-16A: 120W
INFO-HCSx-32A: 240W

Short-circuit protection:
 Short to ground, short to phase

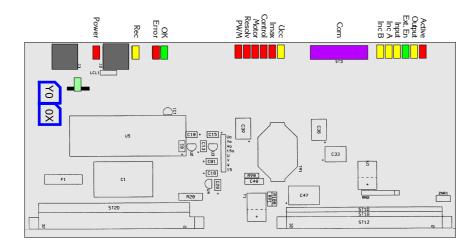
- Temperature monitor:

Precision: $\pm 2^{\circ}$

Connector Allocations

			d		b				Z			
2 4 6 8	0000	+	Active 24 I-Red 24	V V	0000	-	Active 0 I-Red 0	V V	I		24 0 Shield Shield	
10 12 14 16	I O I O	+ + + +	Ext. E 24 In 24	V 1 V	1 0 1 0	-	Ext. I 0 In 0	EN V 1 V		5	Shield Shield Shield Shield	l l
18 20 22 24	I O I O	+ + + +	INC 24 INC 5	A V B V	1 0 1 0	- - +	INC 0 INC 5	A V B V		S M	Shield Shield Temp Temp	l +
26 28 30 32 48	I O O	+ + + +	Cos Sin Ref A		I 0 0	- - - +	Cos Sin Ref B		0	5	Shield Shield Shield NM	l

Connector 1 angled DIN 41612. Type F


DIN 41612, Type F-48 2,8mm pin

	d						Z	
4 6 8	I	+	565	V	I	+	565	V
8	_			-	I	+	565	V
10 12	Ο		Ü		О		U	
14 16	Ο		V		О		V	
18 20	0		W		О		W	
22 24	I	-	565	V	I		565	V
26	I	-	565	V	1	-	505	v
28 30	0	Т	-Swite	-h	I	Т	Switc	h
32 15		1.	OWILL	J1 1	0	(Ground	d

Connector 2 angled DIN 41612, Type H-15

6,3mm pin

Wiring

Adressing (blue)

S1,S2 (Y0,0X) (Adr.)	Axis (channel)	Incr. transmitter (channel)
	, ,	(Criainiei)
00 03 10 13	0 3 4 7	
 70 73	28 31	
80, 82 90, 92	0, 2 4, 6	1, 3 5, 7
•••	·	
F0, F2	28,30	29,31

The incremental transmitter can be integrated directly into the control algorithm. If 0x80 is added to the current axis number (increase rotary switch Y0 by 8), the incremental transmitter will report on the next following channel number. In this connection, only even addresses are allowed for the controller so that the incremental encoder will always come to lie on an odd address.

LEDs on receiver module

Power = +5V supply

Rec = INFO-Link receiver signal OK

LEDs

The functions of the other LEDs on the front panel are described starting on page 7.

Jumpers (light green)

The jumpers influence the light intensity of the transmitting LED and thereby the segment length of the fiberoptic cable to the next board.

 Segment length
 Jumper position

 0 ... 10m
 no jumper

 8 ... 30m
 >10

 20 ... 50m
 >30

Specifications

Supply 24V DC

- Electrically isolated
- Operating voltage:

24V DC +10%, -5%

Current consumption: 380 mA

Sampling rate

- Sampling rate: 8...12kHz (current, velocity and position control)

Outputs Out 0,1

- Connector 1, Pin 1..8
- Outputs electrically isolated:

 ${
m V}_{
m OFF}$: 24V ${
m I}_{
m ON}$: 500mA

Inputs INP 0..3

- Electrically isolated:
- Input 0: 24V - Input 1..3 without connection: 5V
- with 1.2kΩ series resistor: 24V

Increment inputs

- Incremental transmitter input with A,B tracks
- Interface: 5V/RS422 - max. count frequency: 2.5MHz

5 Supply

- Voltage: 5V; +10% max. current: 200mA
- Supply for additional incremental transmitter (no electric isolation from 24V board supply)

Mounting

- Connector DIN 41612, Type F-48, Typ H-15
- 19"Rack mounting
- Dimensions: (DxHxW;SE)

2.5A 100 x 234 x 45.4 mm; 9SE 5A 100 x 234 x 71 mm; 14SE 16A 100 x 234 x 106 mm; 21 SE 32A **160** x 234 x 106 mm; 21 SE

RS232 interface (violet)

Communication with the controller is done either via the INFO-Link or via the RS232 interface with the aid of the program ACS-Show.

Connections

Board supply

For the board supply, a 3-phase rectifier without electrolytic capacitor is sufficient. To avoid trouble, however, we recommend an electrolytic capacitor of $4'700 \dots 10'000 \mu F$.

The rack must be provided with a power line filter, immediately after entry of the power supply.

Screening lines

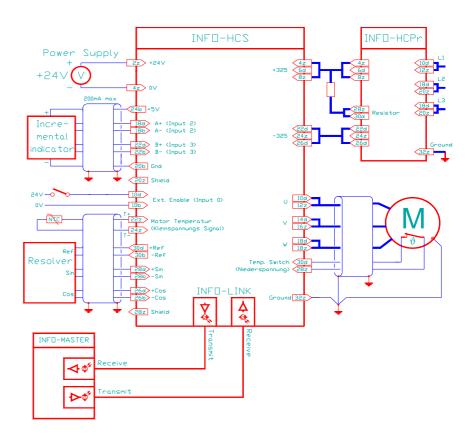
The signals of the resolver are extremely susceptible to interference; therefore the resolver must be installed with a twisted-pair and screened cable.

The incremental transmitter and the serial interface as well as the motor cables must always be connected with screened lines!

Bonding

Always connect all screens at both ends. To avoid undesirable discharge currents through the screening, it may be necessary to provide a binding conductor, especially with large distances or different supplies.

Screen bar


The control cabinet must be provided with a screen bar to which all screened cables are connected.

Metallic connectors with all-round contacting of the screen are also suitable for cable entries.

Connectors

Interruptions in the resolver and motor cables at the cabinet entries etc. should be implemented using metallic connectors and not terminal connections.

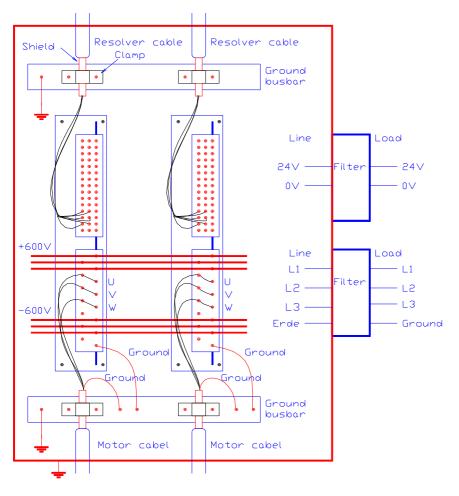
Connections

Motor temperature switch

Open = Motor overtemperature connector Ph2, Pin T+, T-

Closed = Ok

Inputs, Outputs


Extern Enable, 24V (Inp0) Zero Mark (Inp1)

Incremental encoder trac A (Inp2) Incremental encoder B (Inp3) Controller Aktiv (Out 0) Current reduction Aktiv (Out 1)

All inputs and outputs must be wired inside the cabinet.

Grounding

Grounding of INFO-ACSr

Cooling

 $All \, INFO-HCS \, controllers \, must \, be \, cooled \, with \, an \, additional \, fan \, inside \, the \, cabinet \, to \, dissipate \, the \, exhaust \, heat.$

Further documentation

See also INDEL wiring guidelines and INDEL design guidelines.

Wiring

Motor temperature

The motor temperature can be measured as required by a bimetal switch (Tswitch) or using an NTC (MTemp).

Sensor leads in the motor cables

If the leads of the bimetal switch are located in the motor cables, these must be wired to connectors Ph 2.

Sensor leads in the resolver cable

If the leads of the bimetal switch or of the NTC are located in the resolver cable, these must be wired to connector Ph 2. (insulation class!)

Filter

The 24V supply must be provided with a filter, as well as the 3 x 400V AC of the power supply. The optimal filter may have to be determined by a measurement for line-bound emission, as the radiated interference depend, among other things, on the motor cable length.

Grounding

The casing of the INFO-HCS board is grounded. Take care to ensure that the casing is connected to the mounting plate so that good conduction exists. (EMC and heat dissipation). As the resolver is mounted directly onto the motor, this motor transmitter combination must must always be grounded, as otherwise the transmitter electronics will be exposed to interference.

LEDs

Function of the LEDs on the Front Panel

Active

Motor control active (Out 0)

Requires external enable (Ext En, INP-0). Output stage ON, motor energized and with current and 4k-Pos control on Active or Simulation.

In the event of an error, the controller will quit the active state. \\

Output

Current reduction mode active (Out 1)

In this operation mode, the controller limits the maximum current to I_{red} . Out-1 of 4k-Pos-Job = 1

Ext. En

External controller enable (INPUT 0)

Interlocks output stage by hardware function, i.e. the controller cannot be switched to active without external enable.

INP-0 can be included in the emergency off circuit. Without connection: 5V input, connected with $1.2k\Omega$ series resistor $\rightarrow 24V$ input.

Input

Free input (INPUT 1)

Free 5V input, can be read in 4k-Pos Job. (See software manual)

Inc A

Incremental transmitter track A (INPUT 2)

Allocated as standard as incremental transmitter input A (additional encoder). 5V input, or RS 422 interface.

IncB

Incremental transmitter track B (INPUT 3)

Allocated as standard as incremental transmitter input B (for the additional encoder). 5V input, for RS 422 interface.

OK

Error

Emergency system

In the emergency system, Flash-PROM burning is supported. To enable the controller to start in the emergency system, you must plug a short-circuit connector onto the serial interface (front panel).

Connections: Signals Pin

RxD, TxD 2, 3 DSR, DTR 6, 4

Once the controller has been started up, the short-circuit connector can be removed and the serial cable to the PC can be connected again.

Function of the LEDs on the Front Panel

LEDs

Blink code

The LEDs indicate by lighting, fast or slow blinking the status of different functions of the controller. For the following sketch, the following applies:

E = Error; Delete Error from Software: Deactive, Active

W = Warning

Please use the program "ACS-Show" as additional help in verifying the error.

same rhythm as OK-LED on controller

approx. 3 times per second

approx. 1.5 times per second

Intermediate circuit voltage (565 VDC)

(see also modulation, PWM-LED)

 \downarrow = E Intermediate circuit voltage lower 20V (U_{CCMIN})

 \downarrow = E Intermediate circuit voltage higher 800V ($U_{CC,MAX}$)

= E Phase error, see below

= W Intermediate circuit voltage lower 500V (U_{CCOK})

= Intermediate circuit voltage 501 ... 799V

Ballast resistance

Dimming = Ballast resistance is switched on-off (PWM output)

= E Discharge does not work: U_{CC} does not become smaller although ballast resistance is on.

 $(U_{CC}$ blinks with same frequency as ballast LED)

Causes:

- No ballast resistance connected
- Extraneous supply through parallel-connected controllers (U_{CC} bridged)

Phase error

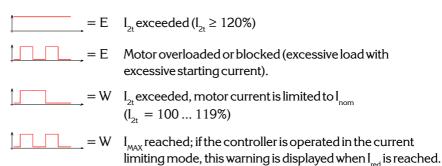
 \downarrow = E A phase has failed.

Controller status

Ucc

Ballast

Ballast + 👝 Ucc

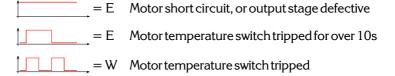

■ Ballast + □ U_{cc}

LEDs

Function of the LEDs on the Front Panel

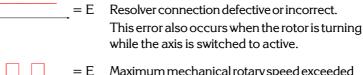
MAX

Motor current


Control

Temperature output stage

= E	Output stage overheated (from 80°C)
= W	Output stage hot (from 75° C)


Motor

Motor: Temperature, short circuit

Resolver

Resolver

____ = E Maximum mechanical rotary speed exceeded

PWM

Modulation

= E	Current offset too high (Test before Active)
= E	Current measurement range exceeded
= W	PWM 100% modulation reached (poss. U_{cc} too low?)

If the motor is operated with high rpm, the PWM-LED will start to blink. U_{cc} is fully modulated, i.e. the full int. circuit voltage is present at the motor. This is an allowable operating condition. With high power (current) and high rpm, the intermediate circuit voltage will drop and the $U_{_{\rm CC}}$ LED and the PWM LED will start to blink. In this state, the controller is allowed to be in continuous operation. Only when the controller exceeds the maximum allowable path error (increment, entrainment error) is the loading limit reached and the controller switches to Error.

Function of the LEDs on the Front Panel

LEDs

Important!

If the maximum rpm cannot be reached because path errors, entrainment errors occur while the $U_{\rm CC}$ LED is blinking, check the following causes:

- Inadequate power of supply mains (400V). Inadequately sized or too high-ohmic isolating transformer. Observe line length and cross-section of the supply line.
- Overloaded motor.

Remedy:

- Increase intermediate circuit voltage with additional transformer windings Observe max. U_{cc} =720V!
- If several controllers exist distribute them among different phases.
- Possibly apply additional power pack (INFO-ACPr).

CPU-OK, cont	troller active		OK
	Controller deactive, OFF, CPU ok		
	Controller active, ON, CPU ok		
Errors = E	Software error, CPU on Trap	•	Error
Wrong contro	l parameters	_	Error + Control
= E	After the controller is switched on (not Active), the Control LED together with Error LED indicate unplausible of missing control parameters. With the factory-set parameters, this status display appears.	or	
Wrong motor	parameters	_	Error + Motor
= E	After the controller is switched on (not Active) the Motor LED together with Error LED indicates unplausible of missing motor parameters. With the factory-set parameters, this status display appears.	or	
RAM errorr		_	Error + Ucc
= E	If this error message appears, the controller must be subjected to a hardware overhaul. Please contact Indel AG.		

INFO-HCS2r

Motion Control

Notes on Safety

Terms

In the following text, the term "Module" refers to the AC Servo-controller and the associated power components as well as control components which have an operating voltage of over 50V AC.

Specialist personnel

Only qualified specialst personnel are allowed to carry out work such as handling, installation, start-up and maintenance.

Documentation

Before installation and start-up, please read the present documentation. Incorrect handling of the Modules may lead to personal injury or property damage. Always observe the technical data and the information provided on the connection conditions.

ESD

The Modules contain electrostatically endangered components which might be damanged by improper treatment. Discharge your body before touching the Modules. Avoid contact with highly insulating materials (synthetic fibers, plastic film, etc.). Place the Modules on a conductive base.

Live components

During operation, keep all covers and cabinet doors closed. If you touch live components, you may risk death or serious injuries or property damage. Never disconnect the electrical connections of the Modules while they are energized and never withdraw rack boards from the rack while they are energized. In the worst case, this may cause electric arcs, injuring persons and damaging contacts.

Deactivation

Control and power connections may be live even if a motor is not turning. After the operating voltage has been switched off, residual voltages may remain present during several minutes. Measure the intermediate circuit voltage and wait until the voltage has dropped below 50V.

Inquiries

These notes on safety do not claim to be complete. Should you have any inquiries, please call us. (Phone $+41\,1\,956\,20\,00$)

