

GIN-SAC4xX

Hardware

Benutzerhandbuch

Revision: 1.49 Datum: 24.09.2024

Sprache: Deutsch

Ausgabe: Originalbetriebsanleitung

Inhaltsverzeichnis

1.	Allgemein	8
1.1.	. Über dieses Handbuch	8
1.2.	. Vertrieb und Service	8
1.2.	.1. Hersteller	8
1.2.2	.2. Support	8
1.3.	. Disclaimer	8
1.4.	. Copyright	8
1.5.	Dokumentation Versionen	9
1.6.	. Verwendete Begriffe	12
1.7.	. Verwendete Symbole	13
2.	Sicherheit	14
2.1.	. Sicherheitshinweise	14
2.1.	.1. Qualifiziertes Personal	14
2.1.2	.2. Dokumentation	14
2.1.3	.3. ESD- Schutz	14
2.1.4	.4. Schutz gegen berühren elektrischer Teile	14
2.1.	.5. Ausschalten	15
2.1.6	.6. Hochspannungsprüfung, Isolationswiderstandsprüfung	15
2.1.	.7. FI-Schutzschalter	15
2.1.8	.8. Safe Torque off	15
2.1.9	.9. Maximale Bewegung im Fehlerfall	16
2.2.	. Sicherheitstechnische Auflagen	17
2.2.	.1. Gefahrenanalyse	17
2.2.2	.2. Überprüfen der Sicherheitsfunktion	17
2.2.3	.3. Nachlaufen	17
2.2.4	.4. Bremswiderstand, resp. Ballastwiderstand	17
2.2.	.5. Restenergie im Zwischenkreis	18
2.2.	.5.1 Heisse Oberfläche	18
2.2.6	.6. Schutzabdeckungen	18
2.2.	.7. Schutz vor gefährlichen Bewegungen	19
2.2.8	.8. Hängende Lasten	19
2.2.8	.8.1 Spannungsausfall der Logikspeisung	19
2.2.9	.9. Spannungsausfall der Netzspeisung	19
2.2.	.10. EMV	19
2.2.	.11. Inbetriebnahme	20
2.2.	.12. Betriebsdauer	20

2.2.13.	Schutz gegen umgehen auf einfache Weise	20
2.2.14.	Verantwortlichkeit	20
2.2.15.	Defekte Drives	20
2.3.	Bestimmungsgemässe Verwendung	21
3.	Handhabung	22
3.1.	Lagerung	22
3.2.	Wartung	22
3.3.	Reparatur-Dienst	22
3.4.	Entsorgung	22
4.	Produktidentifizierung	23
4.1.	Lieferumfang	25
4.1.1.	GIN-SAC4x4	25
4.1.2.	GIN-SAC4x3	25
4.1.3.	GIN-SAC4x2	26
4.1.4.	GIN-SAC4x1	26
4.2.	Optionales Zubehör	27
4.3.	Typenschilder	28
4.3.1.	SAC4x4 230V	28
4.3.2.	SAC4x4 400V	28
4.3.3.	SAC4x3 230V	29
4.3.4.	SAC4x3 400V	29
4.3.5.	SAC4x2 230V	30
4.3.6.	SAC4x2 400V	30
4.3.7.	SAC4x1 230V	31
4.3.8.	SAC4x1 400V	31
5.	Stopp-/Not-Aus Funktionen nach EN 60204	32
5.1.	Not-Stopp	32
5.1.1.	Realisierung Not-Stopp Kategorie 0	32
5.1.2.	Realisierung Not-Stopp Kategorie 1	33
5.2.	Not-Halt	33
5.3.	Not-Aus	34
6.	Sicherheitsfunktionen mit dem SAC4	35
6.1.	Safe Torque Off (STO)	35
6.2.	Anschlussbeispiel	35
6.3.	SAC4 Drives mit STO	36
6.4.	Diagnosefunktion im Servo-Drive	36

6.5.	Überwachung des Diagnosepfads (K1-K2) durch den Anwender	37
7.	Technische Beschreibung	38
7.1.	SAC4xX Option PRO	38
7.2.	Options-Drehschalter	38
7.3.	Technische Daten	39
7.3.1.	Allgemein	39
7.3.1.1	Ableitstrom	39
7.3.2.	Netzanschluss und Zwischenkreis	40
7.3.3.	Nennströme Endstufen	41
7.3.4.	Logikspeisung	43
7.3.5.	Motor	43
7.3.6.	Feedbacks	44
7.3.6.1	SinCos	44
7.3.6.2	Resolver	44
7.3.6.3	Inkrementalgeber	45
7.3.6.4	Absolutwert Feedback	45
7.3.7.	Digitale IO's	46
7.3.8.	Safe Torque Off (STO)	47
7.4.	Umgebungsbedingungen	48
7.5.	Bemerkungen zum amerikanischen Markt	48
8.	Elektrische Installation	49
8.1.	Hinweise	49
8.2.	Steckerbelegung SAC4xX	50
8.2.1.	GIN-SAC4x4 Übersicht	50
8.2.2.	GIN-SAC4x3 Übersicht	51
8.2.3.	GIN-SAC4x2 Übersicht	52
8.2.4.	GIN-SAC4x1 Übersicht	53
8.2.5.	Logikversorgung / Digitale IOs	54
8.2.6.	Netzanschluss	54
8.2.7.	Motoranschluss	54
8.2.8.	Zwischenkreisspannung	55
8.2.9.	Ballastwiderstand	55
8.2.10.	Feedback Schnittstellen	55
8.2.11.	Safety Connector STO	56
8.3.	Motorenanschluss	57
8.3.1.	3-Phasen Motor an einer Endstufe	57
8.3.2.	3-Phasen Motor an zwei parallelen Endstufen	57

8.3.3.	DC-Motor an einer Endstufe	58
8.4.	Netzanschluss	59
8.5.	Zwischenkreis	60
8.6.	Logikspeisung	60
8.7.	Digitale IOs	61
8.7.1.	Eingänge	61
8.7.2.	Ausgänge	61
8.8.	Externer Bremswiderstand, resp. Ballastwiderstand	62
8.9.	Feedbacks	62
8.9.1.	SinCos Feedback	62
8.9.2.	Resolver Feedback	63
8.9.3.	Inkrementalgeber Feedback	64
8.9.3.1	Anschluss an Absolutwert Interface	64
8.9.3.2	Anschluss an SinCos Interface	65
8.9.3.3	Anschluss von Single-Ended Inkrementalgeber	66
8.9.4.	Absolutwert Feedbacks	67
8.9.4.1	Hiperface	67
8.9.4.2	EnDat 2.1	68
8.9.4.3	SSI / Biss C / EnDat 2.2	69
8.9.5.	Temperatur Sensoren	69
8.10.	Spannungsversorgung	70
8.10.1.	Logikspeisung	70
8.10.2.	Netzanschluss	70
8.11.	Verdrahtung	71
8.11.1.	Leiterquerschnitte SAC4	71
8.11.2.	Kabelführung von Motorleitungen	71
8.11.3.	Kabelführung der sicherheitsgerichteten Abschaltung	71
8.11.4.	Kabelführung von SinCos-, Inkremental- und Resolver-Leitungen	72
8.11.5.	Potentialausgleich	72
8.11.6.	Schutzleiteranschluss	72
8.12.	Motorüberlastschutz	72
8.12.1.	I²t Abschaltung	72
8.12.2.	Ballastwiderstand	72
9.	Mechanische Installation	73
9.1.	Hinweise	73
9.2.	Montagevorschriften	73
9.3.	GIN-SAC4x4	74
9.3.1.	Montage	74

9.3.2.	Abmessung	75
9.4.	GIN-SAC4x3	76
9.4.1.	Montage	76
9.4.2.	Abmessung	77
9.5.	GIN-SAC4x2	78
9.5.1.	Montage	78
9.5.2.	Abmessung	79
9.6.	GIN-SAC4x1	80
9.6.1.	Montage	80
9.6.2.	Abmessung	81
10.	Fehleranalyse	82
10.1.	Status-LED	82
10.2.	Fehlertabelle	83
11.	Weiterführende Dokumente	85
11.1.	EG-Konformitätserklärung	85
11.2.	SUVA Baumusterprüfbescheinigung für SAC4x4	86
11.3.	SUVA Baumusterprüfbescheinigung für SAC4x3	88
11.4.	SUVA Baumusterprüfbescheinigung für SAC4x2	90
11.5.	SUVA Baumusterprüfbescheinigung für SAC4x1	92
11.6.	CB Test Zertifikat	94
12.	Normen	96

1. Allgemein

1.1. Über dieses Handbuch

Dieses Benutzerhandbuch beschreibt die Indel Servo Drives der Serie GIN-SAC4. Es handelt sich bei diesem Dokument um die Originalbetriebsanleitung.

Dieses Handbuch behandelt nur Geräte mit der Sicherheits-Funktion STO. Dieses Handbuch **gilt nicht für** Geräte mit erweiterten Sicherheitsfunktionen **Option FS**

1.2. Vertrieb und Service

1.2.1. Hersteller

Indel AG Tüfiwis 26 CH-8332 Russikon Switzerland

info@indel.ch www.indel.ch

Tel.: +41 44 956 20 00

1.2.2. Support

Indel AG bietet Ihnen einen umfangreichen technischen Support:

- · Engineering für Hardware und Software
- · Weltweiter Support via Team Viewer
- · Weltweiter technischer Support vor Ort
- · Inbetriebnahme von Steuerungen und Antrieben vor Ort

1.3. **Disclaimer**

Die Dokumentation wurde nach bestem Wissen und Gewissen erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt und verbessert. Die Dokumentation ist deshalb niemals als vollständig zu betrachten. Sämtliche Angaben in der Dokumentation sind ohne Gewähr. Wir behalten uns das Recht vor, jederzeit und ohne Ankündigung Änderungen vorzunehmen. Es können keine Ansprüche auf Änderungen bereits gelieferter Produkte gemacht werden.

1.4. Copyright

© Indel AG

Weitergabe sowie Vervielfältigung dieses Dokuments sind, soweit nicht ausdrücklich von Indel gestattet, verboten.

1.5. **Dokumentation Versionen**

Version	Datum	Autor	Kommentar
Rev pr		M. Suter	Sämtliche Draft Versionen welche vor dem ersten Re-
Day 1 00	26.02.2014	M. Suter	lease herausgegeben wurden. • Release
Rev 1.00	19.05.2014	M. Suter	Aufnahme des GIN-SAC4x3
	20.05.2014	M. Suter	
Rev 1.11			 Hinzufügen von Montage Vorschriften, Options- Drehschalter und Drehschalter Beschreibung
Rev 1.12	13.06.2014	M. Suter	Korrektur GIN-SAC4x3 nur 3xEndstufe
Rev 1.20	09.07.2014	M. Suter	 Kapitel 6.1 gelöscht Ausgabe Original in Deckblatt hinzugefügt Kapitel 2.3 keine Verwendung im Explosionsbereich Kapitel 2.3 Einsatz nur im Industriebereich Kapitel 2.1.1 erweitert Kapitel 2.2.2 hinzugefügt Kapitel 7.3.8, Sicherung der Relais 1A Kapitel 5.1.1 und 5.1.2 nur zu Anschauungszwecken
Rev 1.21	28.07.2014	M. Suter	Wechsel auf interactive PDF Format
Rev 1.22	06.08.2014	M. Suter	Diverse KorrekturenNormen aktualisiert
Rev 1.23	11.08.2014	M. Suter	· Anpassungen an EMV Norm
Rev 1.24	12.08.2014	M. Suter	· Konformitätserklärung hinzugefügt
Rev 1.25	11.11.2014	M. Suter	 Kapitel 7.3.4, Stromaufnahme der Logikspeisung 2A
Rev 1.26	25.11.2014	M. Suter	 Baumusterbescheinigung für SAC4x4 und SAC4x3 hinzugefügt
Rev 1.27	02.04.2015	M. Suter	Status LED Kapitel 10.1 auf Seite 82 hinzugefügt
Rev 1.28	02.04.2015	M. Suter	Reaktionszeit toff des STO in Kapitel 7.3.8 auf Seite 47 von 3ms auf 15ms korrigiert
Rev 1.29	15.04.2015	M. Suter	 Änderung Leiterquerschnitte Kapitel 8.11.1 Änderung Motorüberlastschutz Kapitel 8.12 Änderung Montagevorschriften Kapitel 9.2
Rev 1.30	31.07.2015	M. Suter	Suva Freigabe auf TypenschilderAufnahme GIN-SAC4x1Diverse Korrekturen
Rev 1.31	28.10.2015	M. Suter	 PT100 und PT1000 neu auch als Temperatursenso- ren verwendbar, Kapitel 8.9.5
Rev. 1.32	19.04.2016	M. Bleuler	 Konformitätserklärung gemäss aktuellen Richtlinien angepasst, Kapitel 11.1 Zwischenkreiskapazität für SAC4x3, SAC4x2 und SAC4x1 hinzugefügt, Kapitel 0
Rev. 1.33	17.10.2016	M. Bleuler	 Konformitätserklärung gemäss aktuellen Richtlinien angepasst, Kapitel 11.1 Zwischenkreiskapazität für SAC4x3, SAC4x2 und SAC4x1 hinzugefügt, Kapitel 7.3.2
Rev. 1.34	13.12.2016	M. Bleuler	 Neue Skizze unter Montagevorschriften im Kapitel 9.2 hinzugefügt EG-Konformitätserklärung nur für STO Option in Kapitel 11.1 angepasst

Version	Datum	Autor	Kommentar
Rev. 1.35	15.06.2017	M. Bleuler	 Altes Indel Logo durch neues Indel Logo ersetzt Neu-Verlinkung der URLs
Rev. 1.36	06.02.2018	M. Bleuler	 Ehemaliges Kapitel 8.3.3 "drei parallele Endstufen" gestrichen, da bis dato noch nicht umgesetzt. Zusatzvermerk unter Kapitel 6.4 in Verbindung mit interner Auswertung hinzugefügt. Kapitel 0 zur besseren Verständigung in Zusammenhang mit Kapitel 6.1 neu hinzugefügt. Überspannungskategorie Norm in Kapitel 0 angepasst. Überspannungskategorie Norm in Kapitel 7.4 angepasst. Steckerbelegung Bildpositionen in Kapitel 8.2.2 und 8.2.3 korrigiert.
Rev. 1.37	02.04.2019	S. Bärtschi	 Dokument in Word konvertiert Sicherung im N Leiter entfernt (Kapitel 8.2.6) Diverse Tippfehler korrigiert Abbildungen der Geräte mit neuem Logo Abbildungen der Typenschilder mit neuem Logo Hinweis auf FS Regler im Manuals Kapitel 1.1 Feature Biss C und Endat 2.2 hinzugefügt Feature Dout und DIN als GPIO (Kapitel 8.7) Einschränkung DC-Motor und STO (Kapitel 0, 7.3.5, 8.3.3) Detail Formulierungen der Beschreibung STO (Kapitel 6.1) Abbildung Konformitätserklärung mit neuem Logo
Rev. 1.38	16.07.2019	S. Bärtschi	 Präzisierung Diagnose STO Kapitel 6.5 Präzisierung minimale Häufigkeit "Überprüfung der
			Sicherheitsfunktion" nach neuer EN61800-5-2:2016
Rev. 1.39	11.09.2019	S. Bärtschi	Baumusterprüfbescheinigungen SUVA erneuert
Rev. 1.40	27.09.2019	S. Bärtschi	 Typenschilder mit neuem SUVA Zertifizierungszei- chen
Rev. 1.41	19.11.2019	S. Bärtschi	 Kapitel Heisse Oberfläche Leistungen S1 ergänzt, Hinweis zu Absicherung und Netzfilter (Kapitel 7.3.2) Ableitstrom ergänzt (Kapitel 7.3.1.1) FI-Schutzschalter (Kapitel 2.1.7)
Rev. 1.42	01.04.2020	S. Bärtschi	 englische Version aktualisiert Abbildungen verbessert für Englisch/Deutsch Unterstützung CB Test Zertifikat hinzugefügt Begriff "Bremswiderstand" ersetzt durch neu "Ballastwiderstand"
Rev. 1.43	06.10.2020	M. Bleuler	Update EG-Konformitätserklärung (Kapitel 11.1)
Rev. 1.44	18.11.2020	S. Bärtschi	 Neue Frontseite Kapitel 8: Ansicht Gerätefronten aktualisiert Kapitel Zubehör SAC4-AD-2X ergänzt. Kapitel 7.5: Bemerkungen zum amerikanischen Markt
Rev. 1.45	15.09.2020	M. Bleuler	 Update EG-Konformitätserklärung in Kapitel 11.1 Sincos Auswertung von 10 Bit auf 12 Bit korrigiert in

Version	Datum	Autor	Kommentar
			Kapitel 7.3.6.1, 8.9.1, 8.9.4.1 und 8.9.4.2
Rev. 1.46	24.05.2022	S. Bärtschi	 Maximaler Kurzschlussstrom des Netzanschlusses ergänzt in Kapitel 7.3.2
Rev. 1.47	30.09.2022	M. Bleuler	· Update EG-Konformitätserklärung in Kapitel 11.1
Rev. 1.48	14.09.2023	M. Fischer	Update EG-Konformitätserklärung in Kapitel 11.1Normen erneuert in Kapitel 12
Rev. 1.49	24.09.2024	M. Fischer	 EG-Konformitätserklärung mit Link auf unsere Website geändert in Kapitel 11.1 Baumusterprüfbescheinigungen SUVA erneuert in Kapitel 11.2, 11.3, 11.4, 11.5

1.6. Verwendete Begriffe

Begriff	Bedeutung	
GinLink	Indel Feldbus, 1GBit/s Ethernet basierend	
PE-Leiter	Erdleiter, Schutzleiter	
GIN-SAC4xX	Bezeichnung für ganze GIN-SAC4 Serie	
GIN-SAC4	Bezeichnung für ganze GIN-SAC4 Serie	
GIN-SAC4x4	Bezeichnung für GIN-SAC4 mit 4 Endstufen	
GIN-SAC4x3	Bezeichnung für GIN-SAC4 mit 3 Endstufen	
GIN-SAC4x2	Bezeichnung für GIN-SAC4 mit 2 Endstufen	
GIN-SAC4x1	Bezeichnung für GIN-SAC4 mit 1 Endstufen	
+DC / -DC-	Zwischenkreis abgriff an den Servo-Drives	
Feldbus Master	Master des GinLink Feldbusses	
STO	Safe Torque Off	
Ballastwiderstand	Auch Bremswiderstand genannt, zum Abführen überschüssiger Energie im Zwischenkreis bei Bremsphasen der Motoren	

1.7. Verwendete Symbole

	Wichtiger Hinweis für den Anwender
	Das Symbol kennzeichnet wichtige Hinweise für den Benutzer.
	Alle Hinweise müssen beachtet werden
\wedge	Achtung
/1\	Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung
ACHTUNG	zu Sach- und/ oder Personenschaden führen können.
\wedge	Gefahr
4	Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung
GEFAHR	zu Personenschaden durch Elektrizität führen können
www.	Hyperlink
	Kennzeichnet einen Hyperlink auf eine Datei oder Information im Internet
	Verweis
	Verweis auf ein Dokumentation internes Kapitel

2. Sicherheit

2.1. Sicherheitshinweise

Mit folgenden Sicherheitshinweisen wird kein Anspruch auf Vollständigkeit erhoben. Bei Fragen, Unklarheiten oder Problemen kontaktieren Sie uns bitte.

2.1.1. Qualifiziertes Personal

Alle Arbeiten wie Transport, Installation, Inbetriebnahme und Service dürfen nur durch qualifiziertes Fachpersonal ausgeführt werden. Qualifiziertes Fachpersonal sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen. Nationale Unfallverhütungsvorschriften sind zu beachten. Die Sicherheitshinweise, die Angaben zu den Anschlussbedingungen (Typenschild und Dokumentation) und die in den technischen Daten angegebenen Grenzwerte sind vor der Installation und Inbetriebnahme sorgfältig durchzulesen und unbedingt einzuhalten.

2.1.2. **Dokumentation**

Lesen Sie vor Installation und Inbetriebnahme diese Dokumentation sowie Dokumentationen auf die verwiesen werden, vollständig durch. Falsche Handhabung kann zu Personen- oder Sachschaden führen. Halten Sie die technischen Daten, Angaben zu den Anschlussbedingungen sowie Umgebungsbedingungen unbedingt ein.

2.1.3. **ESD- Schutz**

Die GIN-SAC4 Servo-Drives beinhalten elektrostatisch gefährdete Bauelemente, die durch unsachgemässe Behandlung beschädigt werden können.

Entladen Sie Ihren Körper, bevor Sie den Servo-Drive berühren. Vermeiden Sie Kontakt mit hoch isolierenden Stoffen (Kunstfaser, Kunststofffolien, etc.).

Legen Sie den SAC4 Servo-Drive im spannungslosen Zustand auf eine leitfähige Unterlage.

Kontakte von Steckverbinder am Drive und an angeschlossenen Kabeln sowie Kontaktzungen an Leiterbahnen nicht berühren.

2.1.4. Schutz gegen berühren elektrischer Teile

Für den Betrieb des SAC4 Servo-Drives ist es notwendig, dass bestimmte Teile Spannungen von mehr als 50V_{AC}, also Kleinspannungen führen. Werden solche Teile berührt, kann es zu lebensgefährlichen elektrischen Schlägen kommen. Es besteht die Gefahr von Tod oder schweren gesundheitlichen Schäden. Vor dem Einschalten eines Drives muss sichergestellt werden, dass das Gerät ordnungsgemäss mit dem PE-Leiter verbunden ist. Die Erdverbindung muss immer angebracht werden, auch wenn der Drive nur kurzzeitig in Betrieb gesetzt wird. Vor dem Einschalten sind spannungsführende Teile mit mehr als 50V_{AC} mit geeigneten Massnahmen gegen direktes Berühren abzusichern. Anschlüsse können auch gefährliche Spannungen führen, wenn sich der Motor nicht dreht. Das Berühren der Anschlüsse in eingeschaltetem Zustand ist deshalb verboten. Vor Arbeiten am Drive ist dieser vom Netz zu trennen und gegen Wiedereinschalten zu sichern.

Bei Berührung von spannungsführenden Teilen (z.B. Klemmen) besteht die Gefahr von Tod oder schweren gesundheitlichen oder materiellen Schäden. Trennen Sie die elektrischen Anschlüsse der Module nie unter Spannung. In ungünstigen Fällen können Lichtbögen entstehen und Personen und Material wie Kontakte schädigen.

2.1.5. Ausschalten

Nach Ausschalten der Netzeinspeisung können Restspannungen während mehreren Minuten anliegen. Messen Sie die Zwischenkreisspannung und warten Sie, bis die Spannung unter 50V abgesunken ist.

2.1.6. Hochspannungsprüfung, Isolationswiderstandsprüfung

Am Netzanschluss und Motorenanschluss der Drives darf keine Hochspannungsprüfung oder eine Isolationswiderstandsprüfung durchgeführt werden, ansonsten wird der Drive zerstört.

2.1.7. FI-Schutzschalter

Beim Betrieb am 3phasen Netz kann dieses Produkt im Fehlerfall einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produkts nur ein RCD oder RCM vom Typ B zulässig.

Es dürfen nur allstromsensitive FI-Schutzschalter (Typ B) verwendet werden.

2.1.8. Safe Torque off

Die Sicherheitsfunktion STO wie in Kapitel 6 beschrieben, ist als sichere Impulssperre ausgeführt. Nach dem Zurücksetzen der Impulssperre kann es je nach Applikation zu einem Wiederanlaufen des Antriebes kommen.

Das Aktivieren der Sicherheitsfunktion ist nicht geeignet um den Drive spannungsfrei zu schalten. Das Aktivieren der Sicherheitsfunktion STO bietet keinen Schutz gegen elektrischen Schlag.

Bei einem Mehrfachfehler (Hardwaredefekte der Leistungshalbleiter in der Leistungsendstufe) kann es im Zustand STO trotzdem zu einem kurzzeitigen Anrucken des Motors um einen begrenzten Winkel/Weg kommen. Siehe Kapitel 0.

2.1.9. Maximale Bewegung im Fehlerfall

Es ist zu beachten, dass durch einen Mehrfachfehler in der IGBT Brücke (Hardwaredefekt der Leistungshalbleiter) ein kurzzeitiges Anrucken des Motors möglich ist. Der bei der Anruckbewegung auftretende maximale Drehwinkel der Motorwelle ist abhängig von der Polpaarzahl des verwendeten Motors.

Für permanenterregte Servomotoren:

$$\varphi = \frac{360^{\circ}}{2 \cdot p}$$
 $\varphi = Drehwinkel; p = Polpaarzahl$

Für Linearmotoren:

$$d = \frac{P}{2}$$
 $d = Distanz der Motorbewegung; $P = Polabstand Motor$$

Für DC Motoren:

DC-Motoren dürfen am GIN-SAC4xX **nicht für gefährliche Achsen** verwendet werden.

Die Sicherheitsfunktion STO kann Prinzipbedingt bei DC Motoren durch mehrfach Fehler in der Endstufe oder der Motor-Verdrahtung unwirksam werden!

2.2. Sicherheitstechnische Auflagen

Bei der Installation und dem Betrieb von Indel Drives in Anwendungen mit sicherheitsgerichteter Abschaltung des Antriebs nach Stopp-Kategorie 0 oder 1 gemäss EN 60204-1 und fehlersicherem Schutz gegen Wiederanlauf gemäss EN ISO 13849-1 Kat.3/PL d sind alle Auflagen in diesem Handbuch sowie Auflagen, auf die verwiesen werden zwingend einzuhalten.

Die Indel SAC4 Servo-Drives mit der Funktion STO sind nach den einschlägigen Normen entwickelt worden

2.2.1. Gefahrenanalyse

Der Maschinenhersteller muss eine Gefahrenanalyse für die Maschine erstellen und geeignete Massnahmen treffen, sodass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

Es sind auch an anderen Stellen in diesem Dokument Hinweise auf mögliche Gefahren beschrieben. Sämtliche Hinweise auf Gefahren, Warnungen, Vorsichtsmassnahmen und Informationen müssen beachtet werden.

2.2.2. Überprüfen der Sicherheitsfunktion

Siehe Kapitel 6.5 "Überwachung des Diagnosepfads (K1-K2) durch den Anwender", Seite 37.

Häufigkeit des Testzyklus:

Die EN 61800-5-2 2016 definiert folgende maximale zeitliche Abstände zwischen 2 Testzyklen in Abhängigkeit des sicherheitstechnisch benötigten PL und der Kategorie:

Für SIL 2, PL d Kategorie 3 mindestens 1 Test pro Jahr
 Für SIL 3, PL e Kategorie 3 mindestens 1 Test alle 3 Monate
 Für SIL 3, PL e Kategorie 4 mindestens 1 Test pro Tag

PL, Kategorie sind gemäss Definition in ISO 13849-1.

2.2.3. Nachlaufen

Wenn durch das Nachlaufen applikationsabhängig Gefahren entstehen, müssen zusätzliche Schutzmassnahmen (z. B. bewegliche Verdeckungen mit Zuhaltung) getroffen werden, die Gefahrenstelle so lange abdecken, bis keine Gefahr mehr für Personen oder Sachen besteht. Es ist zu berücksichtigen, dass ohne mechanische Bremse oder defekte Bremse ein Nachlaufen des Antriebs möglich ist.

2.2.4. Bremswiderstand, resp. Ballastwiderstand

Der Ballastwiderstand wird von den Indel SAC4 Servo-Drives nicht sicher angesteuert. Ein defekter oder nicht korrekt angeschlossener Ballastwiderstand hat zur Folge, dass der Motor nicht in der erwarteten Zeitspanne stoppt. Dies kann im ungünstigen Fall zu Personen- und Sachschäden führen.

2.2.5. Restenergie im Zwischenkreis

Rest-Energie in den Zwischenkreis-Kondensatoren kann bis zu 10 Minuten nach Abschalten der Energieversorgung (Öffnen des Hauptschützen bzw. Motorschützen) erhalten bleiben. Es ist möglich, mit dieser Rest-Energie den Motor zu bewegen. Dadurch kann es unter Umständen zu Gefahr bringenden Situationen kommen. Werden zusätzliche externe Kondensator-Module verwendet, dauert es entsprechend länger, bis die Zwischenkreis-Kondensatoren entladen sind.

Folgender Warnhinweis ist auf den Drives angebracht.

2.2.5.1 Heisse Oberfläche

Bei andauernder hoher Belastung aller Endstufen des Geräts können an Stellen des Gehäuses Temperaturen bis zu 80°C erreicht werden.

Folgender Warnhinweis ist auf den Drives angebracht.

2.2.6. Schutzabdeckungen

Zusätzliche Schutzabdeckungen müssen, entsprechend der für die Maschine geforderten Sicherheitskategorie gemäss EN ISO 13849-1, ausgelegt und integriert werden. Nach dem Auslösen des Anhalte-befehls muss, je nach Gefährdung, der Zugang so lange verriegelt bleiben, bis der Antrieb zum Still-stand gekommen ist.

2.2.7. Schutz vor gefährlichen Bewegungen

Durch fehlerhafte Ansteuerung von Motoren können ungewollte und gefährliche Bewegungen ausgelöst werden.

- · Fehlerhafte Installation
- · Fehlerhafte Konstruktion
- · Fehlerhafte oder unvollständige Verdrahtung
- · Defekte Geräte oder Kabel
- · Fehlerhafte Ansteuerung durch die Software

Grundsätzlich ist nach dem Einschalten des Drives mit einer Bewegung des Motors zu rechnen. Ein Schutz von Personen und Maschine kann nur durch übergeordnete Massnahmen gewährleistet werden. Der Bewegungsbereich von Maschinen ist gegen unbeabsichtigten Zutritt von Personen mit geeigneten Massnahmen zu schützen. Das Entfernen, Überbrücken oder Umgehen von Sicherheitseinrichtungen ist strengstens verboten. Leicht zugängliche Not-Aus Schalter sind in ausreichender Anzahl an der Maschine anzubringen. Halten Sie während des Betriebes alle Abdeckungen und Schaltschranktüren geschlossen.

2.2.8. Hängende Lasten

Bei hängenden Lasten muss die Festhaltung der Achse mit zusätzlichen Massnahmen sichergestellt werden. Die Indel SAC4 Servo-Drives bieten keine Ausgänge um Festhaltebremsen sicher ansteuern zu können. Haltebremsen bieten keinen Schutz beim Abbremsen des Motors.

2.2.8.1 Spannungsausfall der Logikspeisung

Bei Spannungsausfall der 24V Logikspeisung am Drive kann der Motor austrudeln. Falls dies nicht zulässig ist, müssen externe Massnahmen ergriffen werden, um ein Austrudeln der Achse zu verhindern.

2.2.9. Spannungsausfall der Netzspeisung

Bei Spannungsausfall der Netzspeisung bzw. der Versorgung für die Motoren kann der Motor austrudeln. Sinkt die Zwischenkreisspannung Ucc unter die konfigurierte Limite Ucc MIN, geht der Servo-Drive auf Fehler und die Motoren werden spannungslos geschaltet.

2.2.10. **EMV**

Für EMV-gerechte Verdrahtung siehe weiteres Dokument INDEL-Verdrahtungs-Richtlinie und INDEL-Aufbaurichtlinie sowie sämtliche Verdrahtungs-Hinweise in diesem Dokument.

www. INDEL Verdrahtungs-Richtlinie

www. INDEL Aufbau-Richtlinie

Der Hersteller von Maschinen bzw. Anlagen hat zusätzliche EMV-Schutzmassnahmen zu treffen, falls diese für seine Maschine zutreffende Produktnorm niedrigere Grenzwerte enthält. Bei Maschinen die viele Indel Servo-Drives enthalten, können ebenfalls zusätzliche EMV-Schutzmassnahmen erforderlich sein.

Der Regler ist für den Einsatz im Industriebereich vorgesehen. Dem Regler muss am Netzanschluss ein Filter vorgeschalten werden. Siehe auch Kapitel 8.10.2

In einer Wohnumgebung (erste Umgebung) kann dieses Produkt hochfrequente Störungen verursachen. Es sind weitere Entstörmassnahmen erforderlich.

2.2.11. Inbetriebnahme

Vor dem Einschalten eines Servo-Drives muss sichergestellt werden, dass das Gerät ordnungsgemäss mit dem Erdpotenzial verbunden ist. Die Erdverbindungen müssen in jedem Fall angebracht werden, auch wenn der Drive nur zu Versuchszwecken in Betrieb gesetzt wird.

Steuer- und Leistungsanschlüsse können Spannung führen, auch wenn sich der Motor nicht bewegt. Das Berühren der Anschlüsse in eingeschaltetem Zustand ist verboten. Vor Arbeiten an den Drives sind diese vom Netz zu trennen und gegen wiedereinschalten zu sichern.

Es müssen eine dokumentierte Inbetriebnahme und ein Nachweis der Sicherheitsfunktionen erfolgen. Für Indel Servo-Drive Anwendungen mit sicherheitsgerichteter Abschaltung des Antriebs nach Stopp-Kategorie 0 oder 1 gemäss EN 60204-1 und fehlersicherem Schutz gegen Wiederanlauf gemäss EN ISO 13849 Kat. 3 sind grundsätzlich Inbetriebnahme Prüfungen der Abschalteinrichtung und der korrekten Verdrahtung durchzuführen und zu protokollieren.

Bei der Inbetriebnahme muss die Signalerkennung in die Funktionsprüfung mit aufgenommen wer-den. Der Zustand der Hilfskontakte der Sicherheits-Relais ist in den Actual-Parametern im Servo-Drive ersichtlich. Diese Anzeige ist jedoch nicht sicherheitsgerichtet.

2.2.12. Betriebsdauer

Spätestens 15 Jahre nach Auslieferung muss das Safety-Modul in den Servo-Drives ausgetauscht werden. Bei einem Einsatz länger als 15 Jahre ist der sichere Betrieb nicht mehr gewährleistet. Dies gilt nicht nur für die Betriebszeit, sondern auch für die Stillstand- und Lagerzeit.

2.2.13. Schutz gegen umgehen auf einfache Weise

Es sind Massnahmen gegen Umgehen der Sicherheitsfunktionen gemäss EN ISO 13849-1 Kat.3/PL d vorzusehen.

2.2.14. Verantwortlichkeit

Die SAC4 Servo-Drives sind grundsätzlich nicht ausfallsicher. Bei einem Ausfall ist der Betreiber dafür verantwortlich, dass die Maschine / Anlage in einen sicheren Zustand geführt wird.

Sämtliche Diagnose- und Überwachungsfunktionen können lediglich die Ansteuerung des Motors unterbrechen. Dies hat zur Folge dass der Motor stromlos wird und nicht mehr kontrolliert und gebremst werden kann. Je nach Anwendung ist es erforderlich zusätzliche Massnahmen zum Abbremsen oder Halten des Motors zu ergreifen.

Der Betreiber ist für die Sicherheit verantwortlich.

2.2.15. **Defekte Drives**

Defekte und beschädigte Drives dürfen unter keinen Umständen in Betrieb genommen werden. Dies kann zu schweren Personen- und Sachschaden führen.

2.3. Bestimmungsgemässe Verwendung

- · Die Indel Servo-Drives dürfen nur innerhalb der spezifizierten Angaben aus diesem Dokument und Dokumenten, auf welche verwiesen wird, verwendet werden.
- Die bestimmungsgemässe Verwendung ist so lange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie 2006/42/EG sowie der EMV-Richtlinie 2004/108/EWG entspricht, beziehungsweise dem aktuellen Stand der erwähnten Richtlinien. Ansonsten dürfen die Indel Servo-Drives nicht in Verkehr gebracht werden.
- · Die Indel Servo-Drives dürfen nur im Industriebereich eingesetzt werden.
- · Die Servo-Drives sind zum Einbau in ortsfeste elektrische Maschinen/Anlagen bestimmt, welche die Maschinenrichtlinie, Niederspannungsrichtlinie sowie die EMV-Richtlinie erfüllen.
- Indel Servo-Drives müssen in einem Schaltschrank eingebaut werden, der nur mit einem Werkzeug geöffnet werden kann. Die Drives müssen so eingebaut werden, dass keine spannungsführenden Teile berührt werden können.
- Die auf Seite 48 in Kapitel 7.4 aufgeführten Umgebungsbedingungen müssen zwingend eingehalten werden. Um die Schaltschranktemperatur auf unter 40°C zu halten, sind allen-falls Belüftungs- oder Kühlungsmassnahmen nötig.
- Die Servo-Drives der Serie GIN-SAC4 k\u00f6nnen direkt an dreiphasigen, geerdeten Industrie-netzen (TN-Netz, TT-Netz mit geerdetem Sternpunkt bei 400V +10%) verwendet werden. Die Servo-Drives d\u00fcrfen nicht an ungeerdeten Netzen und nicht an unsymmetrischen geerdeten Netzen betreiben werden.
- Der Maschinenhersteller ist dazu verpflichtet eine Gefahrenanalyse der Maschine zu er-stellen und mit geeigneten Massnahmen verhindern, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.
- · Die Drives dürfen im Explosionsbereich nicht verwendet werden.

3. Handhabung

3.1. Lagerung

Die Indel SAC4 Drives können bis 12 Monate ohne Einschränkungen gelagert werden. Bei Lagerung von mehr als 12 Monaten müssen die Kondensatoren vor der Inbetriebnahme des Drives neu formiert werden. Dazu müssen alle elektrischen Anschlüsse getrennt werden und an L1 / L2 während 20min 230VAC eingespiesen werden.

3.2. Wartung

Gehäuse für Reinigung nicht tauchen oder absprühen. Bei Verschmutzung im inneren des Geräts: Reinigung durch den Hersteller.

3.3. Reparatur-Dienst

Reparaturen der SAC4 Servo-Drives müssen durch den Hersteller erfolgen. Die Indel Steuerungskomponenten können zu Indel zur Reparatur zurückgesandt werden. Nach der Reparatur sind die für den Betrieb nötigen Konfiguration Files auf dem Drive gelöscht.

Das Öffnen des Gehäuses sämtlicher Indel SAC4 Servo-Drives bedeutet den Verlust der Gewährleistung.

3.4. **Entsorgung**

Die SAC4 Servo-Drives bestehen aus folgenden Materialien:

- Stahl Gehäuse
- Aluminium Kühlkörper
- Elektronische Leiterplatten

Die einzelnen Komponenten müssen fachgerecht entsorgt werden. Alle SAC4 Servo-Drives können zu Indel AG, zur fachgerechten Entsorgung zurückgesandt werden. Die Transportkosten gehen zulasten des Absenders.

4. Produktidentifizierung

Die GIN-SAC4xX Servo-Drives gibt es in folgenden unterschiedlichen Versionen.

Тур	Option	Art. Nr.	Beschreibung
GIN-SAC4x4	5A/230V	611349420	Servo-Drive, STO, 1x230Vac/325Vdc, 4xEndstufen, Total 20Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x4	5A/230V/PRO	611349425	Servo-Drive, STO, 1x230Vac/325Vdc, 4xEndstufen, Total 20Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x4	5A/400V	611349440	Servo-Drive, STO, 3x400Vac/565Vdc, 4xEndstufen, Total 20Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x4	5A/400V/PRO	611349445	Servo-Drive, STO, 3x400Vac/565Vdc, 4xEndstufen, Total 20Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x3	5A/230V	611349320	Servo-Drive, STO, 1x230Vac/325Vdc, 3xEndstufen, Total 15Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x3	5A/230V/PRO	611349325	Servo-Drive, STO, 1x230Vac/325Vdc, 3xEndstufen, Total 15Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x3	5A/400V	611349340	Servo-Drive, STO, 3x400Vac/565Vdc, 3xEndstufen, Total 15Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x3	5A/400V/PRO	611349345	Servo-Drive, STO, 3x400Vac/565Vdc, 3xEndstufen, Total 15Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x2	5A/230V	611349220	Servo-Drive, STO, 1x230Vac/325Vdc, 2xEndstu-fen, Total 10Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x2	5A/230V/PRO	611349225	Servo-Drive, STO, 1x230Vac/325Vdc, 2xEndstu-fen, Total 10Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x2	5A/400V	611349240	Servo-Drive, STO, 3x400Vac/565Vdc, 2xEndstu-fen, Total 10Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x2	5A/400V/PRO	611349245	Servo-Drive, STO, 3x400Vac/565Vdc, 2xEndstu-fen, Total 10Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter

Тур	Option	Art. Nr.	Beschreibung
GIN-SAC4x1	5A/230V	611349120	Servo-Drive, STO, 1x230Vac/325Vdc, 1xEndstufe, Total 5Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x1	5A/230V/PRO	611349125	Servo-Drive, STO, 1x230Vac/325Vdc, 1xEndstufe, Total 5Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x1	5A/400V	611349140	Servo-Drive, STO, 3x400Vac/565Vdc, 1xEndstufen, Total 5Arms Dauerstrom, Single-Core ARM 800MHz, 8MB Flash, 256MB RAM, GinSlave
GIN-SAC4x1	5A/400V/PRO	611349145	Servo-Drive, STO, 3x400Vac/565Vdc, 1xEndstufe, Total 5Arms Dauerstrom, Dual-Core ARM 800MHz, 8MB Flash, 256MB RAM, 0.5MB NVRAM, GinSlave/GinMaster, SD- Card Adapter

4.1. Lieferumfang

4.1.1. **GIN-SAC4x4**

Bei Bestellung der GIN-SAC4x4 mit den Optionen 230V, 400V, 230V/PRO und 400V/PRO sind folgende Komponenten im Lieferumfang enthalten:

- · Servo-Drive GIN-SAC4x4
- · Gegenstecker X7:
 - PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung
- · Gegenstecker X17:
 - PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X10, X11, X12, X13
 - PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X15
 - PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung
- · Gegenstecker X16
 - PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X100
 - PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A, X1A, X2A, X3A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B, X2B, X3B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Ethernet Kabel

4.1.2. **GIN-SAC4x3**

Bei Bestellung der GIN-SAC4x3 mit den Optionen 230V, 400V, 230V/PRO und 400V/PRO sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x3
- · Gegenstecker X7:
 - PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung
- Gegenstecker X17:
 - PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung
- · Gegenstecker X10, X11, X12
 - PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X15
 - PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X16
 - PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X100
 - PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A, X1A, X2A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B, X2B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Ethernet Kabel

4.1.3. **GIN-SAC4x2**

Bei Bestellung der GIN-SAC4x2 mit den Optionen 230V, 400V, 230V/PRO und 400V/PRO sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x2
- · Gegenstecker X7:
 - PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung
- Gegenstecker X17:
 - PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung
- · Gegenstecker X10, X11
 - PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung
- · Gegenstecker X15
 - PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung
- · Gegenstecker X16
 - PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X100
 - PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A, X1A
- Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Ethernet Kabel

4.1.4. **GIN-SAC4x1**

Bei Bestellung der GIN-SAC4x1 mit den Optionen 230V, 400V, 230V/PRO und 400V/PRO sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x1
- · Gegenstecker X7:
 - PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung
- Gegenstecker X17:
 - PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X10
 - PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X15
 - PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X16
 - PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung
- Gegenstecker X100
 - PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Ethernet Kabel

4.2. **Optionales Zubehör**

	Тур	Art. Nr.	Beschreibung
	SAC4-AD-2X	611755000	Steckbarer kompakter Adapter für GIN-SAC4xX, verbindet 2 Motor-End- stufen parallel, für höhere Motor- ströme.
Dun			Montage erfolgt werkzeuglos durch einfaches Aufstecken auf den SAC4 und festdrehen der Rändelschrauben.
			Die Verbindung zum Motor erfolgt über den normalen, dem SAC4xX beiliegen- den Motorstecker.
			den normalen, dem SAC4xX beili

Anwendungsbeispiel SAC4-AD-2X

4.3. **Typenschilder**

4.3.1. **SAC4x4 230V**

4.3.2. **SAC4x4 400V**

GIN-SAC4x4	5A/400V	Servo	o-Drive	
611349440			S/N 119	300008
Power Supply Power S1 Protection Type	3x110400Vac 50/60Hz 11.3kVA IP20		uilt: 2019	(E uva
INDEL AG Tuefiwis 26	⊕INDEL	HW	D.1	
CH-8332 Russikon		GAL	1.1.9	

4.3.3. **SAC4x3 230V**

4.3.4. **SAC4x3 400V**

4.3.5. **SAC4x2 230V**

4.3.6. **SAC4x2 400V**

4.3.7. **SAC4x1 230V**

4.3.8. **SAC4x1 400V**

GIN-SAC4x1	5A/400V	Servo	-Drive	
611349140			S/N 119	300008
Power Supply Power S1	3x110400Vac 50/60Hz 2.9kVA		uilt: 2019	(E
Protection Type	IP20		SI SI	IFICATION
INDEL AG Tuefiwis 26	ÐIN⊃EL	HW	D.1	
CH-8332 Russikon	UNDEL	GAL	1.1.9	

5. Stopp-/Not-Aus Funktionen nach EN 60204

Mit den Indel Servo-Drives GIN-SAC4 können, mit zusätzlichen externen Sicherheitsschaltgeräten, Stopp-Funktionen der Kategorie 0 und 1 nach EN 60204-1 realisiert werden. Folgend sind die verschiedenen Stopp-Kategorien, wie sie in EN 60204 erläutert sind, aufgelistet.

Stopp-Kategorie 0

Stillsetzen durch sofortiges Ausschalten der Energiezufuhr zu den Maschinenantrieben. Ungesteuertes Stillsetzen der Achse.

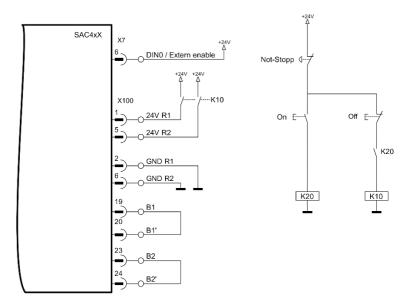
Stopp-Kategorie 1

Ein gesteuertes Stillsetzen der Achse. Dabei wird die Energiezufuhr zu den Maschinenantrieben aufrechterhalten, um die Achse innerhalb einer definierten Zeit kontrolliert abzubremsen. Danach wird, nach einer definierten Zeit, die Energiezufuhr unterbrochen

Stopp-Kategorie 2

Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den Maschinenantrieben erhalten bleibt. Die Bremsrampe sowie der Stillstand werden überwacht.

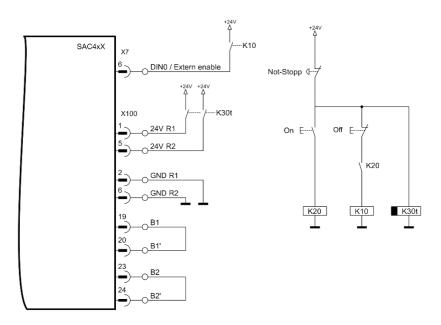
5.1. Not-Stopp


Ein Not-Stopp ist definiert als ein Stopp der Kategorie 0 oder 1 gemäss EN60204. Die Wahl der entsprechenden Kategorie ist abhängig von der durchgeführten Risikobeurteilung der Maschine.

5.1.1. Realisierung Not-Stopp Kategorie 0

Folgendes Anwendungsbeispiel ist unverbindlich und dient nur zur Veranschaulichung. Es wird nur die Realisierung einer Not-Stopp Kategorie 0 gezeigt und hat keinen Zusammenhang mit dem endgültigen Performance Level.

- · Sofortiges Ausschalten der Energiezufuhr zu den Maschinenantrieben durch den STO
- · Achsen können austrudeln
- · Not-Stopp Kategorie 0



5.1.2. Realisierung Not-Stopp Kategorie 1

Folgendes Anwendungsbeispiel ist unverbindlich und dient nur zur Veranschaulichung. Es wird nur die Realisierung einer Not-Stopp Kategorie 1 gezeigt und hat keinen Zusammenhang mit dem endgültigen Performance Level. Für das Einleiten einer Notbremsrampe müsste nicht zwingend der "extern Enable" verwendet werden. Die Notbremsrampe kann auch auf einen beliebigen digitalen Eingang im System konfiguriert werden.

- Kontrolliertes Abbremsen der Achsen mittels "external Enable"
- Zeitverzögertes ausschalten der Energiezufuhr zu den Maschinenantrieben durch den STO
- Not-Stopp Kategorie 1

5.2. Not-Halt

- Ein Not-Halt ist ebenfalls ein Not-Stopp, jedoch mit weiteren Anforderungen. Folgendes muss zusätzlich beachtet werden
- Der Not-Halt muss gegenüber allen anderen Funktionen und Betätigungen in allen Betriebsarten Vorrang haben
- Die Energiezufuhr zu den Maschinenantrieben welche eine gefahrbringende Situation verursachen können, muss ohne Erzeugen anderer Gefährdungen, entweder unverzüglich unterbrochen werden (Stopp-Kategorie 0) oder so gesteuert dass die gefahrbringende Bewegung so schnell wie möglich angehalten wird (Stopp-Kategorie 1).
- Das Rücksetzen darf kein Wiederanlaufen einleiten

5.3. Not-Aus

Bei einem Not-Aus wird die Energieeinspeisung des Servo-Drives mittels elektromechanischen Schaltgeräten unterbrochen.

Daraus folg ein Stopp der Kategorie 0. Not-Aus muss dort vorgesehen werden wo:

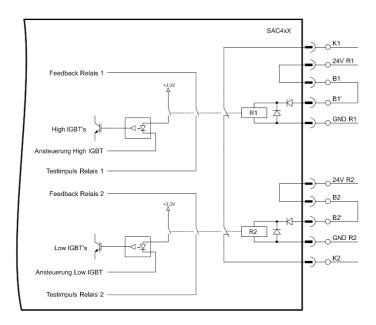
- · Schutz gegen direktes Berühren nur durch Abstand oder Hindernisse erreicht werden (Bspw. mit Schleifleitungen, Schleifringkörpern, Schaltgeräten in elektrischen Betriebsräumen).
- Es die Möglichkeit anderer Gefährdungen oder Beschädigungen durch elektrische Energie gibt.

Ist die Stopp-Kategorie 0 nicht zulässig, so können andere Massnahmen getroffen werden damit ein Not-Aus nicht mehr notwendig ist. Beispielsweise Schutz gegen direktes Berühren (EN 60204).

6. Sicherheitsfunktionen mit dem SAC4

Die Inhalte dieses Handbuchs gelten nur für die unter Kapitel 6.3 Seite 36 aufgeführten Geräte. Die Angaben gelten insbesondere nicht für Geräte mit FS Option!

6.1. Safe Torque Off (STO)


Mit der Sicherheitsfunktion STO werden alle am Drive angeschlossenen Antriebsmotoren in einen energielosen Zustand versetzt. Dadurch sind die Motoren Drehmoment- und somit kraftfrei. Da der Antrieb kein Moment mehr erzeugen kann, kann auch keine Gefahr bringende Bewegung entstehen.

Die Funktion STO wird technisch mittels zwei Impulssperren realisiert. Nachfolgende Abbildung verdeutlicht das Funktionsprinzip der sicheren Impulssperre. Die beiden Impulssperren wirken jeweils getrennt auf die oberen bzw. unteren IGBT's der Halbbrücken der Motor-Endstufen. Alle Kontakte von Relais 1 und Relais 2 sind dabei zwangsgeführt. Somit geben die Hilfskontakte die Stellung der Impulssperren wieder und dienen als Diagnosekanal.

Der korrekte Zustand der beiden Sicherheitsrelais muss vom Anwender, mittels dem Diagnose Pfad (K1 und K2), überwacht werden. Wird dabei ein unzulässiger Zustand erkannt, liegt ein defekt vor und die Maschine muss stillgelegt werden.

Zur Fehlersuche kann der Zustand der beiden Sicherheitsrelais auch über systeminterne, nicht sichere Variablen, eingesehen werden.

An den Anschlüssen B1 B1' sowie B2 B2' müssen externe Drahtbrücken angebracht werden. Diese Drahtbrücken dienen als Vorsichtsmassnahme und verhindern bei Verwechslungen den irrtümlichen Einsatz von SAC4xX Geräten mit Option FS. Dies könnte sonst im schlimmsten Fall zur Überbrückung der Sicherheitsfunktion führen.

6.2. Anschlussbeispiel

Ein unverbindliches Anschlussbeispiel ist im Inbetriebnahme Manual in Kapitel 4 zu finden.

www. <u>Inbetriebnahme-Manual</u>

6.3. SAC4 Drives mit STO

Folgende Servo-Drives sind mit dem STO ausgestattet.

Тур	Option	Art. Nr.
GIN-SAC4x4	5A/230V	611349420
GIN-SAC4x4	5A/230V/PRO	611349425
GIN-SAC4x4	5A/400V	611349440
GIN-SAC4x4	5A/400V/PRO	611349445
GIN-SAC4x3	5A/230V	611349320
GIN-SAC4x3	5A/230V/PRO	611349325
GIN-SAC4x3	5A/400V	611349340
GIN-SAC4x3	5A/400V/PRO	611349345
GIN-SAC4x2	5A/230V	611349220
GIN-SAC4x2	5A/230V/PRO	611349225
GIN-SAC4x2	5A/400V	611349240
GIN-SAC4x2	5A/400V/PRO	611349245
GIN-SAC4x1	5A/230V	611349120
GIN-SAC4x1	5A/230V/PRO	611349125
GIN-SAC4x1	5A/400V	611349140
GIN-SAC4x1	5A/400V/PRO	611349145

Mit dem Safe Torque Off und den entsprechenden externen Sicherheitsschaltgeräten können Stopps der Kategorie 0 oder Kategorie 1 gemäss EN 60204 realisiert werden. Siehe Kapitel 5.1.1 und 5.1.2.

6.4. Diagnosefunktion im Servo-Drive

Die beiden Hilfskontakte der Sicherheitsrelais (Feedbacks Relais) werden im Servo-Drive intern ausgewertet. Diese Funktionen verhindern, dass beim Setzen der Safety-Eingänge und damit beim Wechsel vom STO in den Normalbetrieb der Motor unkontrolliert loslaufen kann (Wiederanlauf):

- Versucht die Feldbus Master Software, Achsen in den Zustand "aktiv" zu schalten ohne dass die Sicherheitsrelais angezogen sind, wird ein entsprechender Fehler ausgegeben und die Achsen bleiben im Zustand "deaktiviert".
- Fällt einer oder beide Safety-Eingänge im Betrieb weg (STO -Anforderung), so wird der Zustand der Achsen von der Software auf "deaktiviert" gesetzt.

Diese interne Auswertung wird von der Gerätesoftware durchgeführt und gilt **nicht** als **sicher (keine Sicherheitsfunktion).**

6.5. Überwachung des Diagnosepfads (K1-K2) durch den Anwender

Die STO-Funktion der SAC4 Geräte Familie sieht vor, dass der Anwender den Diagnosekontakt K1-K2 am Stecker X100 überwacht und auf Korrektheit prüft. Nur so kann der berechnete Diagnosedeckungsgrad DC des Geräts erreicht werden. Siehe Suva Baumusterprüfbescheinigungen unter Kapitel 11.2.

- Bei STO Anforderung (beide Relais Stromlos) muss der Diagnose Kontakt geschlossen sein und signalisiert damit, dass beide Relais korrekt arbeiten und beide Impulssperren funktionieren (Kein klebender Relais Kontakt).
- · Im normalen Betrieb, muss der Diagnose Kontakt offen sein. Dadurch wird die korrekte Funktion und Verdrahtung des Diagnose Kontaktes geprüft.

Damit gilt jeder fehlerfreie Zustandswechsel vom STO Zustand in den normalen Betriebszustand und umgekehrt als abgeschlossener Testzyklus des Diagnose Tests.

Weicht das überwachte Verhalten des Diagnosekontakts in einem der oben beschriebenen Fälle von der Erwartung ab, so liegt ein Fehler vor und die Maschine muss ausser Betrieb genommen werden.

Minimale Testhäufigkeit

Abhängig von den Sicherheits-Anforderungen der Anwendung ist eine minimale Häufigkeit des Test vorgeschrieben. Informationen hierzu im Kapitel 2.2.2 auf Seite 17.

7. Technische Beschreibung

7.1. SAC4xX Option PRO

Jeder SAC4xX mit der Option PRO ist mit einem Dual-Core Prozessor ausgestattet. Damit ist es möglich, die Motorenregelung auf einem Core zu betreiben, während der zweite Core für eine kundenspezifische Applikation genutzt werden kann. Damit kann, bei einfacheren Applikationen, der SAC4xX gleichzeitig auch als Master bzw. GinLink Master eingesetzt werden.

7.2. Options-Drehschalter

Jeder SAC4xX ist mit einem Options-Drehschalter (S1) ausgestattet. Damit kann bestimmt werden, in welchem Zustand der Master gebootet wird. Nachfolgende Tabelle zeigt die verschiedenen Zustände im Bezug des Options-Drehschalters und den möglichen Kombinationen.

Wird die LAN Schnittstelle aktiviert so ist diese automatisch auf der Buchse X8 GinLink out aktiviert.

Drehschalter Position	Notsys- tem	GinLink Master ¹⁾	LAN	Default IP	Bemerkung
0x0					Standard Slave
0x1		Х	Х		
0x2		Х	Х	Х	
0x3	Х				
0x4			Х		Standard Stand-Alone
0x5	Х		Х		
0x6			Х	Х	
0x7	Х		Х	Х	
0x8 0xF	Reservier	t			

1) Nur der GIN-SAC4xX mit der Option PRO kann als GinLink Master eingesetzt werden

7.3. Technische Daten

7.3.1. Allgemein

Allgemeine Bedingungen		GIN-SAC4xX		
		230 V	400 V	
Vibration max		Sinus, 10 Hz bis 150 H	Iz, Amplitude 0.075 mm	
Schock max			1g	
Störaussendung mit Netzfilter		EN 61800-3, Kategorie C2 (Industrie)		
Störfestigkeit mit Netzfilter		EN 61800-3, zweite Umgebung (Industrie)		
Elektrische Sicherheit (Spannungsabstände)		EN 61800-5-1		
Gewicht GIN-SAC4x4	Kg	7.04		
Gewicht GIN-SAC4x3	Kg	5.70		
Gewicht GIN-SAC4x2	Kg	4.45		
Gewicht GIN-SAC4x1	Kg	3	.12	

7.3.1.1 Ableitstrom

Der Ableitstrom des kompletten Antriebsystems setzt sich aus mehreren Komponenten zusammen:

- Ableitstrom verursacht durch das Netzfilter
- Ableitstrom des SAC4x4, verursacht durch Y-Filterkondensatoren
- Ableitstrom verursacht durch die Motorkabelkapazitäten
- Ableitstrom-Anteil mit der PWM Frequenz verursacht durch die Motorkabelkapazitäten

Typischer Ableitstrom des SAC4x4 bei Betrieb am 1ph 230V / 50Hz Netz Ableitstrom des SAC4x4 nominal, 50 Hz Anteil: 2.0 mA

Ableitstrom pro Meter Motorkabel, 50 Hz Anteil: 0.012 mA / m

+ Anteil des Netzfilters

+ Anteil Ableitstrom mit PWM-Frequenz

Typischer Ableitstrom des SAC4x4 bei Betrieb am 3ph 400V / 50Hz Netz

Ableitstrom des SAC4x4 nominal, 150 Hz Anteil: 1 mA

Ableitstrom pro Meter Motorkabel, 150 Hz Anteil: 0.015 mA / m

+ Anteil des Netzfilters

+ Anteil Ableitstrom mit PWM-Frequenz

Praxis Hinweis:

Bei Verwendung von Netzfiltern am 3-Phasen Netz wird üblicherweise der Ableitstrom bei Betrieb an symmetrischen 3 Netzphasen angegeben. Fehlt dabei 1 oder 2 Phasen, so kann der Ableitstrom deutlich grösser sein. Dieser Fall kann beim Ein-/oder Ausschalten der Maschine auftreten, wenn nicht alle 3 Netzphasen genau gleichzeitig geschaltet werden

7.3.2. Netzanschluss und Zwischenkreis

Nenndaten		GIN-S	AC4xX
		230 V	400 V
Nenn-Anschlussspannung 1-Phasig	V_{AC}	1 x 110-10% 230+10%	1 x 110 _{-10%} 400 _{+10%}
Nenn-Anschlussspannung 3-Phasig	V_{AC}	3 x 110 _{-10%} 230 _{+10%}	3 x 110 _{-10%} 400 _{+10%}
Nennleistung S1 SAC4x4 230V/400V 3ph	kVA	6.5	11.3
Nennleistung S1 SAC4x3 230V/400V 3ph	kVA	4.9	8.5
Nennleistung S1 SAC4x2 230V/400V 3ph	kVA	3.3	5.7
Nennleistung S1 SAC4x1 230V/400V 3ph	kVA	1.7	2.9
Überspannungsabschaltung	V_{DC}	400	800
Maximale Netzasymmetrie		±:	3%
Netzfrequenz	Hz	5060	
Zwischenkreiskapazität GIN-SAC4x4	uF	3760	940
Zwischenkreiskapazität GIN-SAC4x3	uF	2820	705
Zwischenkreiskapazität GIN-SAC4x2	uF	1880	470
Zwischenkreiskapazität GIN-SAC4x1	uF	940	235
Zulässige Netzarten Sternpunkt geerdet		TT, TN	
Einschaltintervall	S	>	10
Externe Absicherung SAC4x4	AT	25	5 A
Externe Absicherung SAC4x3	AT	16	6 A
Externe Absicherung SAC4x2	AT	16	6 A
Externe Absicherung SAC4x1	AT	16 A	
Einschaltstrom	Α	<	2
Überspannungskategorie		III (EN 62	1800-5-1)
Max. Kurzschlussstrom des Netzan- schlusses	А	50	000

Siehe Kapitel 8.4 auf Seite 59 und Kapitel 8.5 auf Seite 60

Für den Betrieb des Geräts ist ein externes Netzfilter und eine externe Absicherung notwendig. Die Vorsicherung und das Netzfilters dürfen durch den Anwender entsprechend den Anforderungen der realen Anwendung auf kleinere Werte dimensioniert werden.

Das Gerät ist für den Betrieb an Netzanschlüssen vorgesehen, welche höchstens einen maximalen Kurzschlussstrom von 5000A liefern.

7.3.3. Nennströme Endstufen

Nachfolgende Tabellen zeigen die theoretisch möglichen Nenn- und Maximalströme der Endstufen. Die Daten beruhen nur auf theoretischen Berechnungen. Die individuelle Belastung muss daher immer vom Anwender getestet werden. Vor allem ist die strikte Einhaltung der Umgebungsbedingungen in Kapitel 7.4 zu beachten.

Nennströme		GIN-S	SAC4x4		
		230 V	400 V		
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}	22			
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}		33		
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}		18		
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	27			
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	13			
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	19.2			
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	9			
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	1	3.5		
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}		6		
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	9			
I _{MAX} Ballast IGBT	A_{RMS}	24			
Minimaler externer Ballastwiderstand	Ω	15 30			
Maximale Verlustleistung	W	250			

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-SAC4x3		
		230 V	400 V	
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}	16.5		
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	24	4.5	
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}	1:	3.5	
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	20		
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	10		
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	14.5		
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	6.5		
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	1	10	
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}	4	l.5	
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	6.75		
I _{MAX} Ballast IGBT	A_{RMS}	24		
Minimaler externer Ballastwiderstand	Ω	15 30		
Maximale Verlustleistung	W	185		

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-SAC4x2			
		230 V	400 V		
I _{NENN} bei 8 kHz PWM Frequenz	A _{RMS}	11			
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	1	6.5		
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}		9		
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	13.5			
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	6.7			
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	9.6			
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	4.5			
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	(5.7		
I _{NENN} bei 32 kHz PWM Frequenz	A _{RMS}		3		
I _{MAX} bei 32 kHz PWM Frequenz	A _{RMS}	5.5			
I _{MAX} Ballast IGBT	A _{RMS}	24			
Minimaler externer Ballastwiderstand	Ω	15 30			
Maximale Verlustleistung	W	130			

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-SAC4x1			
		230 V	400 V		
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}	Ē	5.5		
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	8	.25		
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}	4	1.5		
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	6.75			
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	3.25			
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	4.8			
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	2.25			
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	3	.38		
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}	1	1.5		
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	2.25			
I _{MAX} Ballast IGBT	A _{RMS}	24			
Minimaler externer Ballastwiderstand	Ω	15 30			
Maximale Verlustleistung	W	65			

Die Drives können 5s lang mit I_{MAX} betrieben werden

7.3.4. Logikspeisung

Logikspeisung		GIN-SAC4xX	
		230 V 400 V	
Betriebsspannung		24 V _{DC -5%+15%}	
Externe Absicherung	Α	8, Flink	
Stromaufnahme	Α	< 2 ¹⁾	
Max. Potential zwischen GND und Erde	V_{DC}	50 ²⁾	

- 1) Der benötigte Strom ist abhängig von der Belastung durch Feedback-Systeme, internen Lüftern, etc.
- 2) Es wird empfohlen die Logikspeisung beim Netzgerät zu erden (GND und ERDE)

Siehe Kapitel 8.6 auf Seite 60

7.3.5. **Motor**

Motor		GIN-SAC4xX		
		230 V	400 V	
Minimale Induktivität ph-ph	mH		1	
Minimaler Widerstand ph-ph	Ω	0.2		
Maximale Leitungslänge ohne Drossel	m	20		
Motor Kabel		geschirmt		
Minimale Motor Nennspannung	V	325 565		
Unterstützte Motortypen 1)		 DC-Motoren (nicht für gefährliche Achsen) Synchron-Servomotoren Linear-Motoren Bürstenlose Asynchron-Motoren 		

Siehe Kapitel 8.3 auf Seite 57

DC-Motoren dürfen am GIN-SAC4xX nicht für gefährliche Achsen verwendet werden! Die Sicherheitsfunktion STO kann Prinzip bedingt bei DC Motoren durch mehrfach Fehler in der Endstufe oder der Motor-Verdrahtung unwirksam werden!

7.3.6. Feedbacks

7.3.6.1 **SinCos**

SinCos Interface		GIN-SAC4xX		
		230 V	400 V	
Pegel	V _{RMS}		1	
Differenzieller Eingangswiderstand	Ω	120		
Max. Eingangsfrequenz	kHz	200		
Max. Strombelastung 5V Ausgang	mA	200		
Max. Strombelastung 12V Ausgang	mA	200		
Auflösung analog Eingang	Bit	16		
Verwertung analog Eingang	Bit	12		
Anschlusskabel		doppelt geschirmt, Paar verdrillt		

Siehe Kapitel 8.9.1 auf Seite 62

7.3.6.2 **Resolver**

Resolver Interface		GIN-SAC4xX		
		230 V	400 V	
Spannungspegel Generator Ausgang	V_{RMS}		4	
Spannungspegel Sinus / Cosinus Eingang	V_{RMS}	2		
Auflösung analog Eingang	Bit	16		
Verwertung analog Eingang	Bit	16		
Mehrpolige Resolver		V		
Anschlusskabel		doppelt geschirmt, Paar verdrillt		

Siehe Kapitel 8.9.2 auf Seite 63

7.3.6.3 Inkrementalgeber

Inkrementalgeber an		GIN-SAC4xX		
Absolutwert Interface		230 V 400 V		
Pegel		RS422		
Eingangswiderstand	Ω	120		
Max. Eingangsfrequenz	MHz	2.5		
Max. Strombelastung 5V Ausgang	mA	200		
Max. Strombelastung 12V Ausgang	mA	200		
Anschlusskabel		geschirmt		

Siehe Kapitel 8.9.3.1 auf Seite 64

Inkrementalgeber an		GIN-SAC4xX			
SinCos Interface		230 V 400 V			
Pegel		RS422			
Eingangswiderstand	Ω	120			
Max. Eingangsfrequenz	kHz	200			
Max. Strombelastung 5V Ausgang	mA	200			
Max. Strombelastung 12V Ausgang	mA	200			
Anschlusskabel		geschirmt			

Siehe Kapitel 8.9.3.2 auf Seite 65

7.3.6.4 **Absolutwert Feedback**

Folgende Absolutwert Feedbacksysteme werden vom SAC4xX unterstützt

•	Hiperface		Siehe Kapitel 8.9.4.1 auf Seite 67
•	EnDat 2.1	\Longrightarrow	Siehe Kapitel 8.9.4.2 auf Seite 68
•	SSI		Siehe Kapitel 8.9.4.3 auf Seite 69
•	BissC	\Longrightarrow	Siehe Kapitel 8.9.4.3 auf Seite 69
•	EnDat 2.2		Siehe Kapitel 8.9.4.3 auf Seite 69

7.3.7. **Digitale IO's**

Digitale Eingänge		GIN-SAC4xX		
		230 V 400 V		
Eingangsspannung	V _{DC}	24 _{±25%}		
Schaltschwelle	V _{DC}	12		
Analoges Eingangsfilter	kHz	3		
Blindstrom	mA	2		

Siehe Kapitel 8.7.1 auf Seite 61

Digitale Ausgänge		GIN-SAC4xX		
		230 V	400 V	
Max. Ausgangsstrom	Α	1		
Nennspannung externe Speisung	V _{DC}	24±25%		
Schaltverzögerung	ms	0.5		

Siehe Kapitel 8.7.2 auf Seite 61

7.3.8. Safe Torque Off (STO)

Der Diagnosedeckungsgrad hängt direkt von der externen Auswertung der Diagnosekontakte K1-K2 ab! Um einen gewünschten Performance Level des gesamten Sicherheitskreises zu erreichen, sind zusätzliche externe Massnahmen nötig.

Siehe Kapitel 0 auf Seite 37, resp. dem SUVA Beilageblatt zur Bescheinigung Kapitel 11.2.

STO		GIN-SAC4xX		
		230 V	400 V	
Architektur		Kat. 4 nach E	N ISO 13849-1	
Diagnosedeckungsgrad DC		Н	och	
MTTFd	Jahre	1	00	
CCF		Erl	füllt	
Performance Level			е	
PFH	1/h	2.47	x 10 ⁻⁸	
Relais Typ		Elesta SIF 312		
Eingangsspannung 24V R1 und 24V R2	V	24±10%		
Nennstrom pro Relais @ 24V _{DC}	mA	25		
Max Laststrom an K1-K2 Kontakt	А	1		
Externe Absicherung der Safety Strom- kreise	А		1	
Reaktionszeit Relais	ms		10	
Reaktionszeit t _{on}	ms		10	
Reaktionszeit t _{OFF}	ms		15	
Schaltzyklen @ 24V _{DC} / 300mA / Ohmsche Last		10	x 10 ₆	
Prellzeit	ms	<	15	

7.4. Umgebungsbedingungen

Die Einhaltung der Umgebungsbedingungen liegt in der Verantwortung des Benutzers. Indel lehnt jegliche Haftung bei Nichteinhaltung ab.

Umgebungstemperatur Lager	°C	-2080
Umgebungstemperatur Betrieb	°C	040
Maximale Kühlkörpertemperatur	°C	80
Schutzart		IP20
Einbaulage		Vertikal
Zulässige Aufstellhöhe ohne Leistungsreduzierung	müM	1000
Zulässige Aufstellhöhe mit Leistungsreduzierung	müM	2000 -1.0% / 100m (ab 1000 müM)
Relative Luftfeuchtigkeit, keine Kondensation		80%
Verschmutzungsgrad		2 (EN 50178)
Überspannungskategorie		III (EN 61800-5-1)

7.5. Bemerkungen zum amerikanischen Markt

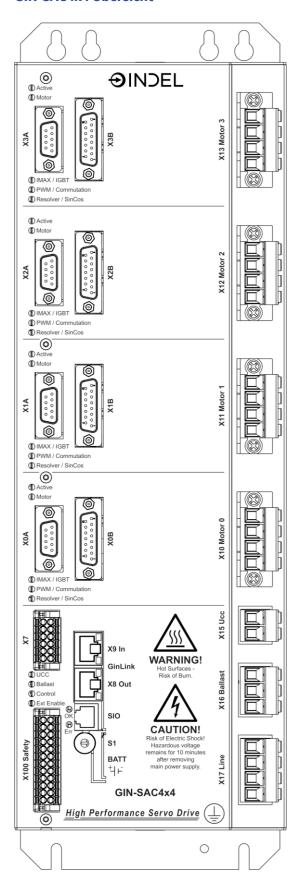
Die SAC4xX Servo Drives haben zurzeit keine UL-Zertifizierung.

Die Geräte der SAC4 Serie wurden im Rahmen einer IEC CB-Scheme Baumusterprüfung vom TüV Süd auf die Einhaltung der Produktnorm IEC-61800-5-1 geprüft. Die entsprechende Bescheinigung befindet sich im Kapitel 11.6 auf Seite 94.

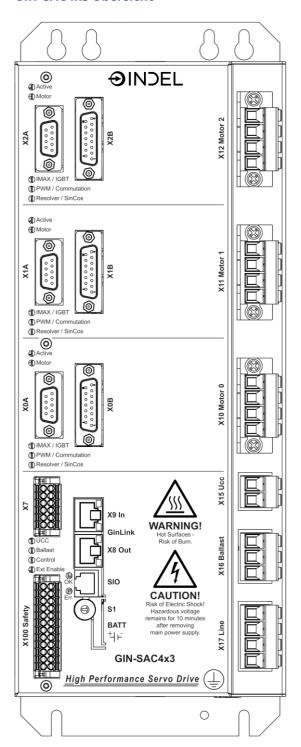
Bei dieser Baumusterprüfung wurden auch die Besonderheiten der UL 61800-5-1 mitberücksichtigt und mitgeprüft, damit erfüllen die Geräte grundsätzlich die technischen Anforderungen der UL 61800-5-1.

Auf Anfrage können wir hierzu einen Auszug aus dem Prüfbericht der Baumusterprüfung als Nachweis zur Verfügung stellen.

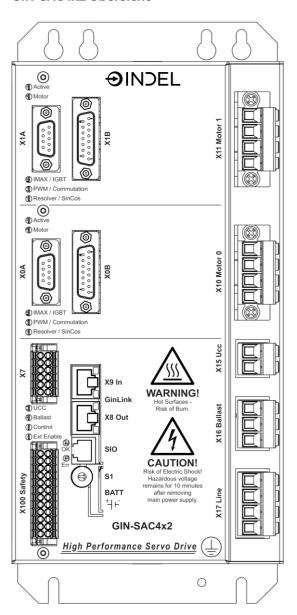
8. Elektrische Installation


8.1. Hinweise

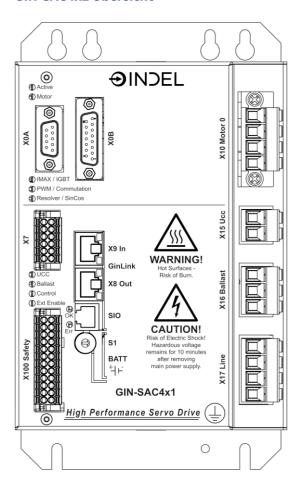
- · Bei Verdrahtungsarbeiten am Drive ist der Schaltschrank gegen Wiedereinschalten zu sichern
- · Die national geltenden Unfallverhütungsvorschriften sind einzuhalten
- Die elektrische Installation ist gemäss nationalen Vorschriften (Leiterfarben,-Querschnitte, Absicherungen, Schutzleiteranschluss, etc.) auszuführen


8.2. Steckerbelegung SAC4xX

8.2.1. GIN-SAC4x4 Übersicht



8.2.2. GIN-SAC4x3 Übersicht



8.2.3. GIN-SAC4x2 Übersicht

8.2.4. GIN-SAC4x1 Übersicht

8.2.5. Logikversorgung / Digitale IOs

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	24 V (Main PWR Supply)
		2	GND
	2 10001 1	3	DIN 3
	4 110011 3	4	DIN 2
	6 1100011 5	5	DIN 1
X7	8 1100011 7	6	DIN 0 / ext. Enable
	10 110011 9	7	DOUT 3
	12 1001 11	8	DOUT 2
		9	DOUT 1
	4 <u> </u>	10	DOUT 0
		11	VCC DOUT (DOUT Supply)
		12	GND DOUT

8.2.6. **Netzanschluss**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	PE
X17 Line	2	2	L1
	(D) 3 4	3	L2
		4	L3

8.2.7. **Motoranschluss**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	W
X10 Motor 0 X11 Motor 1	1 2	2	V
X12 Motor 2 X13 Motor 3	1 3 4	3	U
		4	PE

8.2.8. **Zwischenkreisspannung**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
X15 UCC	1	1	DC+
	2	2	DC -

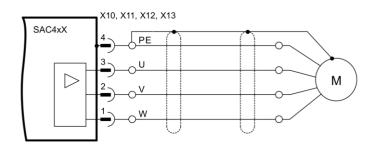
8.2.9. Ballastwiderstand

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
	1 1	1	PE
X16 Ballast	1 2	2	RB -
	' الصّحابا ع	3	RB+

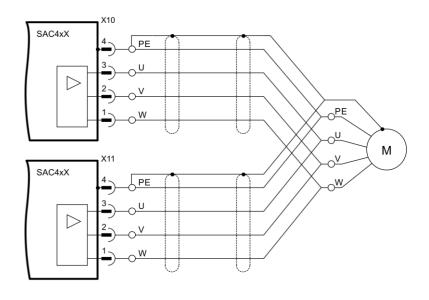
8.2.10. Feedback Schnittstellen

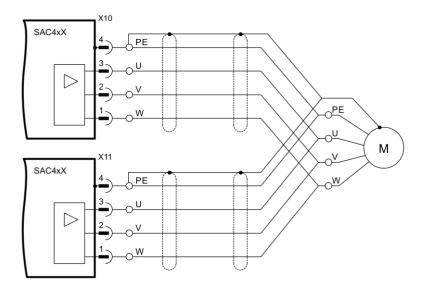
Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung		
			1	Sin+ (SinCos)	
			2	GND	
		3	Cos+ (SinCos)		
	(3 O ⁸)	4	+12V		
		5	Data+ (RS422)		
X0B		6	Ref+ (RS422)		
X1B		7	MTmp		
X2B				8	CLK - (RS422)
ХЗВ		9	Sin- (SinCos)		
		10	GND		
		11	Cos- (SinCos)		
		12	+5V		
		13	Data- (RS422)		
		14	Ref- (RS422)		
		15	Clk+ (RS422)		

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
X0A Resolver 0 X1A Resolver 1 X2A Resolver 2 X3A Resolver 3	1	Shield / Schirm	
	80 04 80 03 70 02 60 02	2	MTmp+
		3	Cos + (Resolver)
		4	Sin + (Resolver)
		5	Ref+ (Resolver)
		6	MTmp-
		7	Cos- (Resolver)
		8	Sin- (Resolver)
		9	Ref- (Resolver)


8.2.11. Safety Connector STO

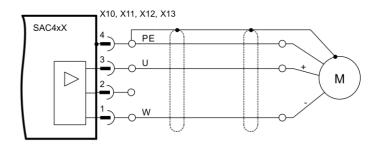
Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	24V R1 Input
		2	GND R1
		3	
		4	
		5	24 V R2 Input
		6	GND R2
	2 11001 1	7	
	4 110011 3	8	
	6 110011 5	9	
	8 110011 7	10	
	10 110 011 9	11	
V100	12 11001 11	12	
X100	14 11001 13	13	
	16 110 01 15	14	
	18 110001 17	15	K1 Diagnose Kontakt
	20 110 01 19	16	K2 Diagnose Kontakt
	22 11001 21	17	
	24 1001 23	18	
		19	B1
	<u> </u>	20	B1'
		21	
		22	
		23	B2
		24	B2'




8.3. Motorenanschluss

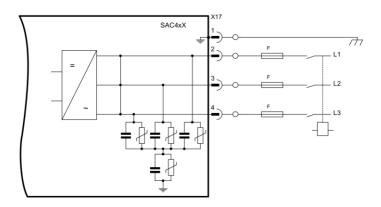
8.3.1. **3-Phasen Motor an einer Endstufe**

8.3.2. **3-Phasen Motor an zwei parallelen Endstufen**

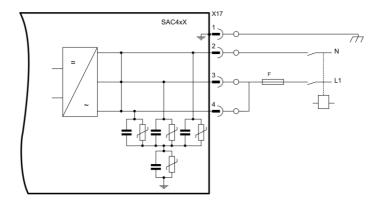


Der Einsatz des optional erhältlichen Adapters SAC4-AD-2x wird empfohlen. Weitere Infos im Kapitel 4.2.

8.3.3. **DC-Motor an einer Endstufe**



DC-Motoren dürfen am GIN-SAC4xX nicht für gefährliche Achsen verwendet werden. Die Sicherheitsfunktion STO kann Prinzip bedingt bei DC Motoren durch mehrfach Fehler in der Endstufe oder der Motor-Verdrahtung unwirksam werden!



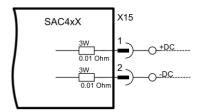
8.4. Netzanschluss

- · 3-Phasige Einspeisung ab dem 400V Drehstromnetz
- · Geeignet für GIN-SAC4xX-400V

- 1-Phasige Einspeisung ab Niederspannungsnetz
- Geeignet für GIN-SAC4xX-230V

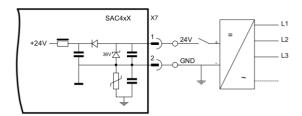
Für den Betrieb des Geräts ist eine externe Absicherung und ein geeignetes Netzfilter vorzusehen. Siehe Kapitel 7.3.2 Seite 40.

8.5. **Zwischenkreis**


Die DC-Zwischenkreisspannung des Drives ist auf den Stecker X15 geführt. Damit können die Zwischenkreise mehrerer SAC Drives parallel geschaltet werden und sich so die Zwischenkreiskapazitäten teilen. Dies ist aber nur erlaubt, wenn die Netzspeisung bei allen Drives identisch ist. Ansonsten können die Drives zerstört werden.

Bei einphasiger Einspeisung müssen alle Drives mit verbundenem Zwischenkreis an die gleiche Netzphase angeschlossen werden, ansonsten wird sich die Zwischenkreisspannung erhöhen und die Drives werden aufgrund von Überspannung zerstört.

Aufgrund der Zwischenkreiskapazitäten dürfen maximal 4 SAC4xX Drives parallel geschaltet werden. Ansonsten wird der Einschaltstrom zu gross und externe Schutze können kleben bleiben oder zerstört werden.

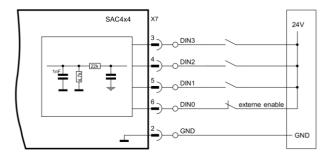

Intern sind zwei 0.01Ω Widerstände vorhanden, um Ausgleichsströme zu limitieren.

- · Parallelschaltung von Zwischenkreisen von SAC4 Drives
- · Anschluss von zusätzlicher externer Kapazität falls die Zwischenkreiskapazität für Beschleunigungsphasen nicht ausreicht
- · Speisung des Zwischenkreises mittels externer DC-Spannungsversorgung

8.6. Logikspeisung

Die Servo-Drives müssen für den Betrieb mit einer 24V Logikspeisung versorgt werden.

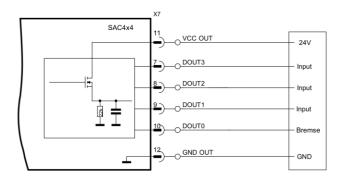
Falls die Speisung bei Kurzschluss mehr als 8A liefern kann, ist 24V seitig eine 8A Absicherung vorzusehen. Siehe Kapitel 7.3.4 Seite 43.


8.7. **Digitale IOs**

8.7.1. **Eingänge**

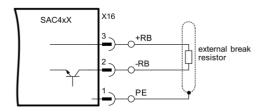
Die digitalen Eingänge können als "extern Enable" verwendet werden. Damit kann der Servo Drive extern deaktiviert werden. Ist eine Not-Stop Bremsrampe konfiguriert, so wird diese nach deaktivieren des Enable Eingangs ausgelöst und der Motor bremst aktiv ab.

Es handelt sich dabei aber um keine "Safety" Sicherheitsfunktion!

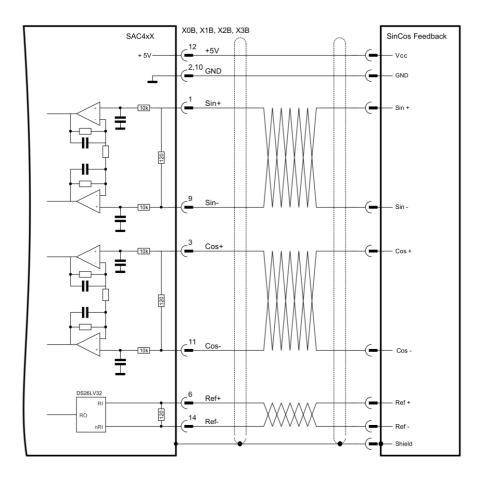

- · DINO kann als extern Enable für alle Achsen auf dem Drive genutzt werden
- · Realisierung eines Not-Stop der Kategorie 1 mittels Einbezug des extern Enable in externen Sicherheitskreis
- · Bezugsmasse ist GND
- · Parallel dazu einsehbar als General Purpose Input

8.7.2. Ausgänge

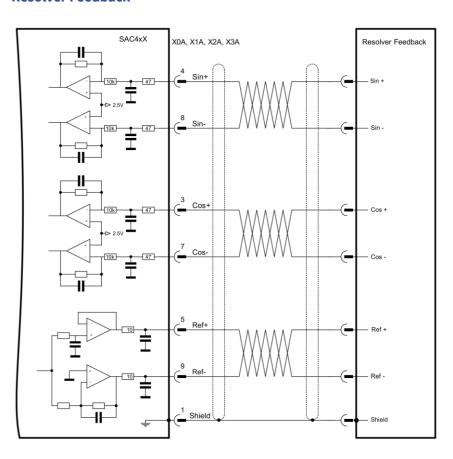
Die digitalen Ausgänge sind als High-Side-Treiber ausgeführt. Die Spannungsversorgung aller Ausgänge erfolgt via Einspeisung einer 24V Spannung am VCC_Out Pin.


- · Konfigurierbar als Ausgang für Haltebremse
- Konfigurierbar als Status-Ausgang "reduzierter Strommodus"
- · Konfigurierbare Zuordnung zwischen Achse zu einem Ausgang
- · Parallel dazu (OR-Funktion) Ansteuerbar über als General Purpose Output
- · Bezugsmasse ist GND OUT

8.8. Externer Bremswiderstand, resp. Ballastwiderstand


Beim Abbremsen wandeln Motoren dynamische Energie in elektrische Energie zurück an den Zwischenkreis. Dies führt zu einem Ansteigen der Zwischenkreisspannung. Über einen externen Bremswiderstand kann der Servo-Drive überschüssige Energie im Widerstand verheizen und verhindert damit, dass die Zwischenkreisspannung zu hoch wird.

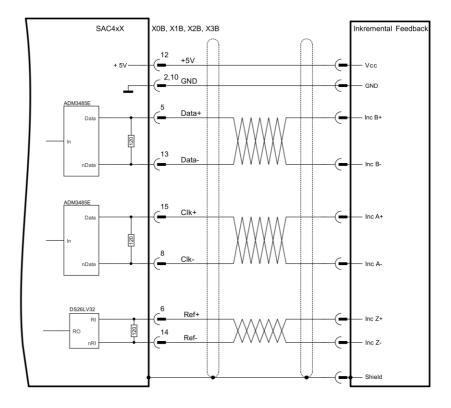
8.9. Feedbacks


8.9.1. SinCos Feedback

- · Anschluss von Standard SinCos Feedback mit 1 V_{RMS}
- · Speisung des Positionsgebers über den Servo-Drive
- · 16 Bit ADC Messung der Positionssignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus bzw. Cosinus Schwingung

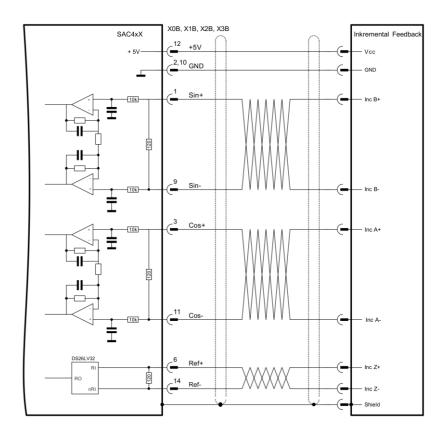
8.9.2. **Resolver Feedback**

8.9.3. Inkrementalgeber Feedback


Inkrementalgeber können auf zwei unterschiedliche Arten an dem Servo-Drive angeschlossen werden. Am SinCos- oder am Absolutwert- Interface. Der Unterschied liegt dabei in der Signalabtastrate und somit bei der maximal möglichen Signalfrequenz des Inkrementalgebers. Je nach Auflösung und vorkommende Geschwindigkeiten werden die Maximalwerte überschritten.

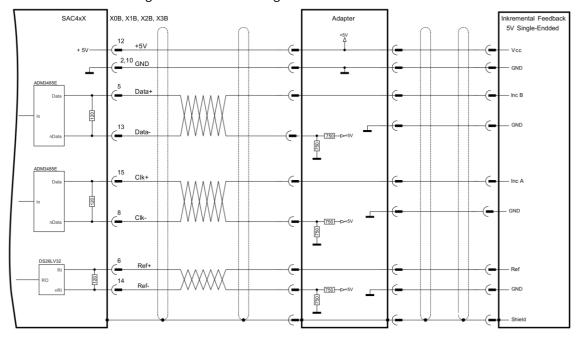
Es wird empfohlen den Inkrementalgeber wenn möglich immer an dem Absolutwert Feedback anzuschliessen.

8.9.3.1 Anschluss an Absolutwert Interface

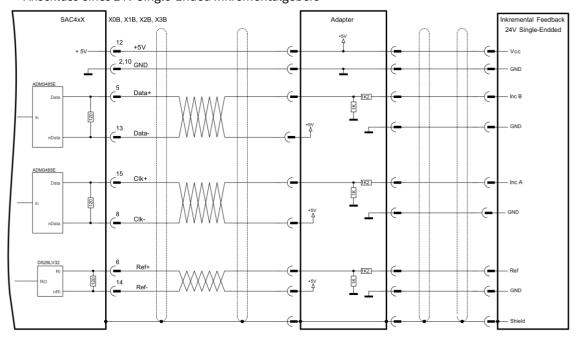

- · Maximale Signalgrenzfrequenz am Eingang liegt bei 2.5 MHz
- · RS422 Standard mit 120Ω Abschlusswiderstand
- · Anschluss von Single-Ended Inkrementalgeber siehe Kapitel 8.9.3.3 auf Seite 66

8.9.3.2 Anschluss an SinCos Interface

- · Maximale Signalgrenzfrequenz am Eingang liegt bei 200 kHz
- · RS422 Standard mit 120Ω Abschlusswiderstand
- · Anschluss von Single-Ended Inkrementalgeber siehe Kapitel 8.9.3.3 auf Seite 66


8.9.3.3 Anschluss von Single-Ended Inkrementalgeber

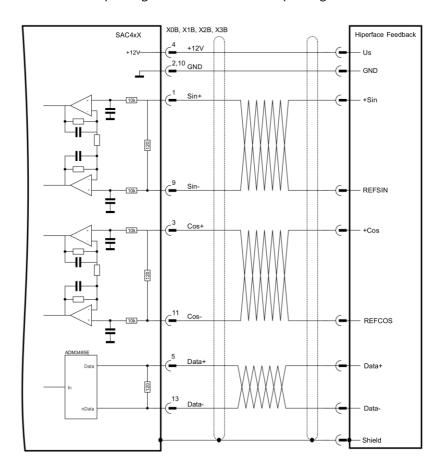
Für den Anschluss von Inkrementalgeber welche ein Single-Ended Interface haben, muss eine Pegelanpassung vorgeschalten werden. Damit kann solch ein Encoder auch an dem Absolutwert-Interface betrieben werden. Der Adapter kann beispielsweise in den Stecker integriert werden. Der Encoder muss fähig sein den Strom für den 120Ω Abschlusswiderstand liefern zu können.



Indel empfiehlt die Verwendung von differenziellen Inkrementalgeber mit RS422 Interface nach heutigem Industriestandard.

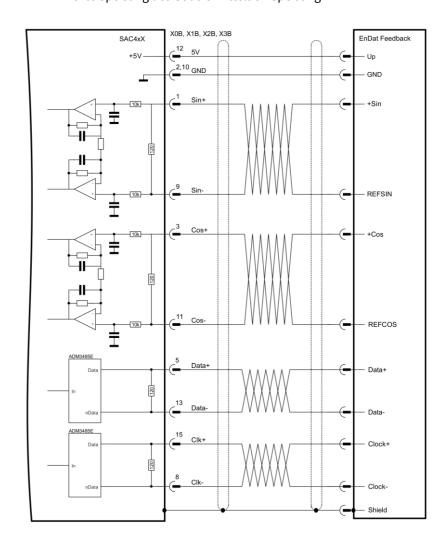
Anschluss eines 5V Single-Ended Inkrementalgebers

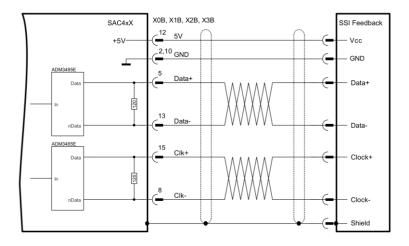
Anschluss eines 24V Single-Ended Inkrementalgebers



8.9.4. **Absolutwert Feedbacks**

8.9.4.1 **Hiperface**


- · Unterstützung von Single turn und Multi turn Gebern
- 16 Bit ADC Messung der Analogsignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus / Cosinus Schwingung
- · Datenleitung nach RS422 / RS485 Standard
- · Direkte Speisung des Gebers mittels 12V Speisung

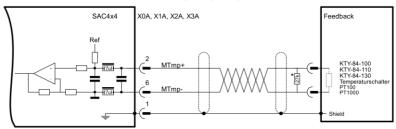

8.9.4.2 **EnDat 2.1**

- · Unterstützung von Single-Turn und Multi-Turn Gebern
- · 16 Bit ADC Messung der Analogsignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus / Cosinus Schwingung
- · Daten- und Clock-Leitung nach RS422 / RS485 Standard
- · Direkte Speisung des Gebers mittels 5V Speisung

8.9.4.3 **SSI / Biss C / EnDat 2.2**

8.9.5. **Temperatur Sensoren**

Temperatur Sensoren von Motoren können direkt an den Feedbacks angeschlossen werden.



Temperatur Sensoren welche in Motor-Leitungen verlegt sind, dürfen nicht auf die Feedback-Buchsen verdrahtet werden. Die Isolationsklasse der Buchsen erlauben max. 50V. Der Sensor muss gegenüber Motorwicklung und Leitungen doppelt resp. verstärkt Isoliert sein.

· Anschluss an Feedback X1B, X2B, X3B, X4B

· Anschluss an Feedback X1A, X2A, X3A, X4A

^{*} Für den Anschluss eines KTY-84-130 Sensors muss ein 27kΩ Widerstand parallel geschaltet werden

8.10. Spannungsversorgung

8.10.1. Logikspeisung

Für die Logikversorgung der GIN-SAC4 Servo-Drives wird ein geregeltes 24V Netzteil mit genügend Leistungsreserven empfohlen. Ausserdem müssen geeignete Netzfilter eingesetzt werden.

Für sicherheitsgerichtete 24V Spannungsversorgungen muss der maximale Strom auf 1A begrenzt werden

Bei Spannungsausfall der 24V Spannungsversorgung können die angeschlossenen Motor nicht mehr gesteuert werden und trudeln aus.

Falls dies in der Anwendung nicht zulässig ist, müssen externe Massnahmen ergriffen werden, um ein Austrudeln der Achse zu verhindern.

8.10.2. Netzanschluss

Der Betrieb der Indel GIN-SAC4 Servo-Drives ist nur an geerdeten TN-, TT-Netzen erlaubt.

Der Betrieb an Delta-Netzen (TN-S Netze mit geerdeter Phase) oder IT-Netzen (isolierte Erde) ist nicht erlaubt. Für einen Betrieb an Netzen ausser TN oder TT ist ein Trenntransformator einzusetzen, wobei der sekundärseitige Sternpunkt geerdet werden muss.

Für den Betrieb ist eine Absicherung und ein Netzfilter vorgeschrieben.

Die Netzeinspeisung muss mit einem Netzfilter versehen werden, damit die EMV Grenzwerte für Störaussendung und Störfestigkeit nach EN61800-3 (Industrieumgebung) eingehalten werden können.

Die effektive Störaussendung einer Maschine ergibt sich aus dem Zusammenspiel aller verwendeten Komponenten. Insbesondere auch den Motoren, die Länge und Kapazität der Motorenkabel, sowie der Belastung des Reglers ab.

Allenfalls ist eine Emissionsmessung in der Anwendung erforderlich um die Einhaltung entsprechender Produktnormen sicherzustellen.

8.11. Verdrahtung

8.11.1. Leiterquerschnitte SAC4

Die Leiterquerschnitte sind als Richtwerte zu betrachten und sind immer den gegebenen Umständen wie Kabellänge und Leistungen anzupassen

Netzeinspeisung	Querschnitt 4 mm ²	600V, 105°C	
DC-Zwischenkreis Ballastwiderstand	Querschnitt 4 mm ²	600V, 105°C, abgeschirmt	
Motorleitungen bis 20m	Querschnitt 2.5 mm ²	600V, 105°C, geschirmt, Kapazität < 150pF/m	
Resolver	Querschnitt 0.25 mm ²	doppelt geschirmt paar. verdrillt, Kapazität < 120pF/m	
SinCos	Querschnitt 0.25 mm ²	doppelt geschirmt paar. verdrillt, Kapazität < 120pF/m	
Encoder	Querschnitt 0.25 mm ²	geschirmt, paar. verdrillt, Kapazität < 120pF/m	
Haltebremse	Querschnitt 0.75 mm ²	600V, 105°C, geschirmt	
Logikspeisung	Querschnitt max 2.5 mm ²		
Digitale IOs	Querschnitt max 2.5 mm ²		

8.11.2. Kabelführung von Motorleitungen

Motorleitungen müssen getrennt von Signal- und Netzleitung verlegt werden. Motorleitungen nicht über Klemmen führen. Falls nötig metallische Steckverbinder verwenden. Motorenkabel sind zwingend mit geschirmten Leitungen zu verlegen. Der Schirm der Motorleitungen muss im Stecker rundum kontaktierend befestigt werden.

Siehe auch Dokumentationen INDEL-Verdrahtungsrichtlinie und INDEL-Aufbaurichtlinie.

8.11.3. Kabelführung der sicherheitsgerichteten Abschaltung

Für Anwendungen mit sicherheitsgerichteter Abschaltung des Antriebs nach Stopp-Kategorie 0 oder 1 gemäss EN 60204-1 und fehlersicherem Schutz gegen Wiederanlauf gemäss EN ISO 13849 Kategorie 3 der Servo-Drives müssen die Energieleitungen und die sicherheitsgerichtete 24V Spannungsversorgung in getrennten Kabeln verlegt werden. Das Kabel für die sicherheitsgerichtete 24V Spannungsversorgung muss zur Fehlervermeidung wie folgt ausgeführt werden.

- · Geschirmte Kabel verwenden
- · Den Schirm beidseitig auflegen
- · Verlegung der Kabel in metallischen Kabelkanälen oder Rohren
- · Die maximale Leitungslänge auf 100m begrenzen

8.11.4. Kabelführung von SinCos-, Inkremental- und Resolver-Leitungen

Die Signale von Resolver und SinCos Feedback-Systeme sind äusserst störanfällig. Deshalb müssen diese Leitungen mit einem paarverdrillten und doppelt abgeschirmten Kabel verlegt werden. Inkrementalgeber müssen mit geschirmten Kabeln verdrahtet werden. Der Schirm muss immer beidseitig aufgelegt werden.

Sämtliche Geberkabel dürfen nicht aufgetrennt werden, um über Klemmen in den Schaltschrank zu gelangen. Die D-SUB Stecker der Geberkabel müssen am Servo-Drive festgeschraubt werden. Die Schirme müssen an den metallischen Steckergehäusen befestigt werden.

8.11.5. Potentialausgleich

Alle Schirme müssen immer beidseitig aufgelegt werden. Um ungewollte Ableitströme über die Schirmung zu vermeiden, muss gegebenenfalls ein Potenzialausgleichsleiter vorgesehen werden. Insbesondere bei grösseren Distanzen oder bei verschiedener Einspeisung. Siehe auch Indel Verdrahtungs-Richtlinie.

8.11.6. Schutzleiteranschluss

Der Schutzleiter muss gemäss EN 61800-5-1 ausgelegt werden.

Querschnitt S der Aussenleiter [mm²]	Mindestquerschnitt des dazugehörigen Schutzerdungsleiters [mm2]
S ≤ 16	S
16 < S ≤ 35	16
35 < S	S/2

8.12. Motorüberlastschutz

Der Motor muss vom Anwender vor Überlast geschützt werden. Ein zusätzlicher Überlastschutz für Motoren mittels Temperaturfühler ist vorgesehen. Es liegt in der Verantwortung des Anwenders diesen Überlastschutz anzuwenden.

8.12.1. I²t Abschaltung

Ein zusätzlicher Schutz gegen Überlastung des bietet die I2t Abschaltung. weitere Details dazu im Inbetriebnahme-Manual.

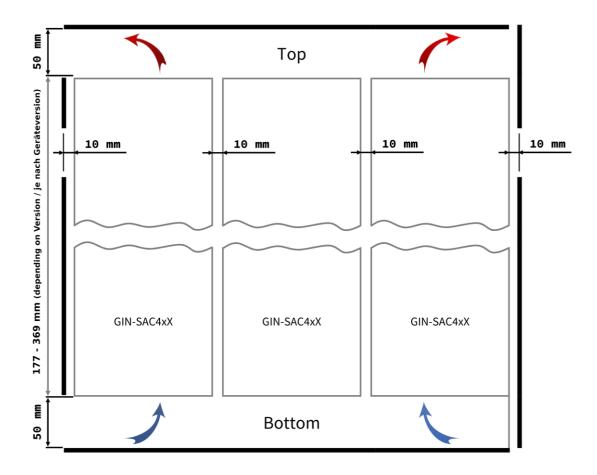
8.12.2. Ballastwiderstand

Der Ballastwiderstand muss gegen thermische Überlast gesichert sein. Am Ballastwiderstand können Spannungen von bis zu 800V entstehen. Der Ballastwiderstand muss dafür ausgelegt sein. Die Ansteuerung des Ballastwiderstandes ist nicht sicher ausgeführt.

9. Mechanische Installation

9.1. Hinweise

Folgende Hinweise müssen vom Anwender beachtet und eingehalten werden.

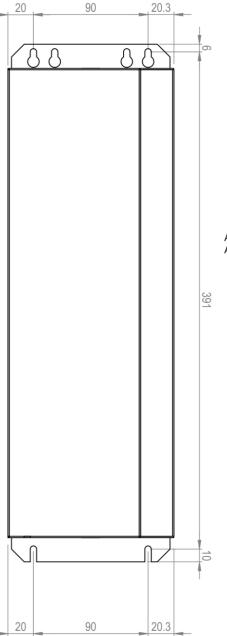

- · Die Montage muss mit geeignetem Werkzeug erfolgen
- · Die Montage der Geräte darf nur im spannungsfreien Zustand erfolgen.
- Es muss für genügend Kaltluftzufuhr von unten im Schaltschrank gesorgt werden
- · Die Luftzufuhr muss gefiltert werden damit keine Schmutzpartikel in die Drives gelangen können

Bei Verwendung von Kühlaggregaten muss folgendes beachtet werden

- Es muss dafür gesorgt werden, dass die ausströmende kalte Luft von Kühlaggregaten nicht direkt an die GIN-SAC4 Servo-Drives geblasen wird
- · Das Kondenswasser von Kühlaggregaten darf nicht in den Schaltschrank tropfen
- · Das Kondenswasser von Kühlaggregaten darf nicht auf elektrische, bzw. elektronische Bauteile tropfen

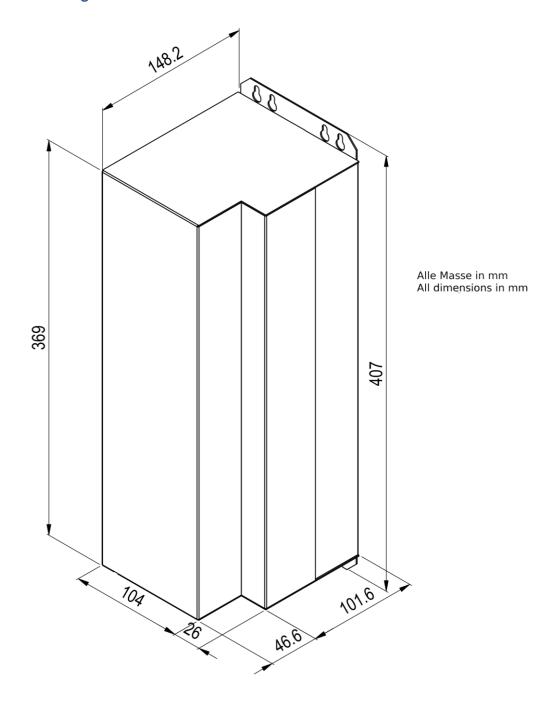
9.2. Montagevorschriften

Beim Betrieb ist auf ausreichend Kühlung bzw. Lüftung der Drives zu achten. Es sind die in Kapitel 7.4 aufgelisteten Umgebungsbedingungen einzuhalten. Die Drives müssen zwingend vertikal eingebaut werden. Die Abwärme der Drives wird durch die zwei integrierten Ventilatoren nach oben weggeblasen. Es sind die in nachfolgender Abbildung beschriebenen Minimalabstände einzuhalten.



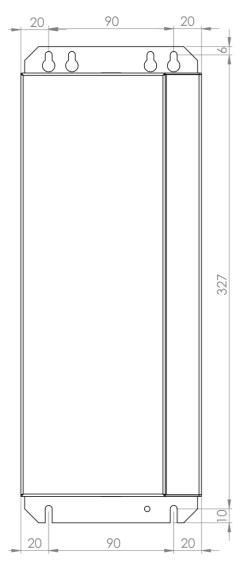
9.3. **GIN-SAC4x4**

9.3.1. **Montage**


Die GIN-SAC4x4 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

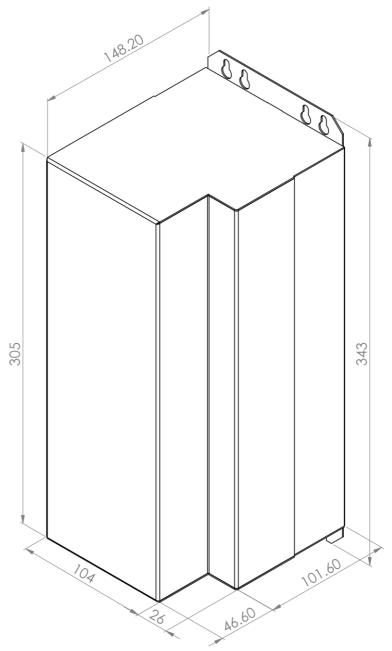
Alle Masse in mm All dimensions in mm

9.3.2. **Abmessung**



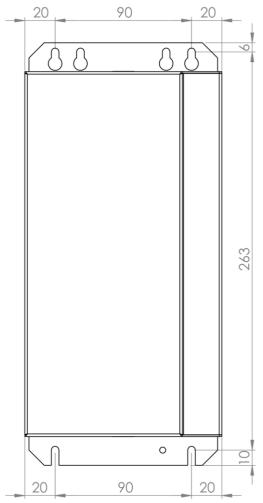
9.4. **GIN-SAC4x3**

9.4.1. **Montage**


Die GIN-SAC4x3 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

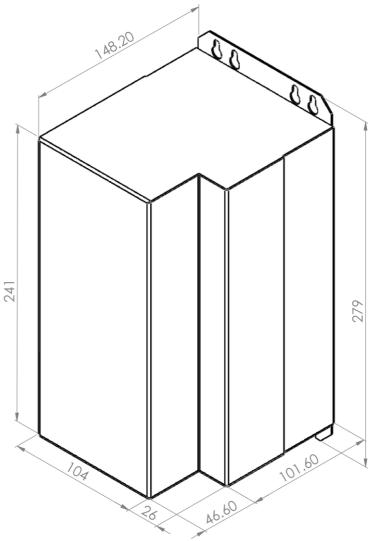
Alle Masse in mm All dimensions in mm

9.4.2. **Abmessung**


Alle Masse in mm All dimensions in mm

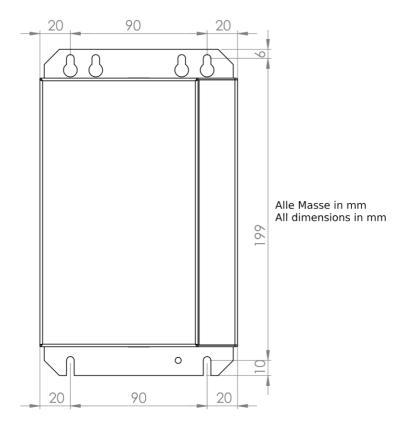
9.5. **GIN-SAC4x2**

9.5.1. **Montage**

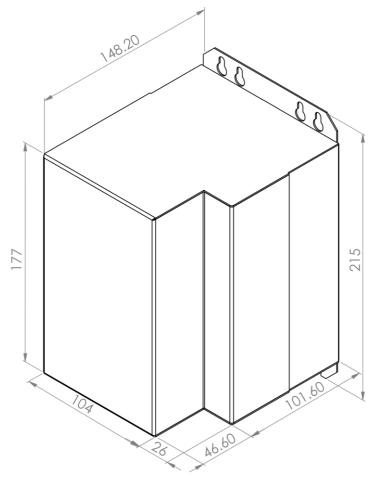

Die GIN-SAC4x2 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

Alle Masse in mm All dimensions in mm

9.5.2. **Abmessung**


Alle Masse in mm All dimensions in mm

9.6. **GIN-SAC4x1**


9.6.1. **Montage**

Die GIN-SAC4x1 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

9.6.2. **Abmessung**

Alle Masse in mm All dimensions in mm

10. Fehleranalyse

Grundsätzlich wird immer zwischen Warnungen und Errors unterschieden. Bei Auftretenden Warnungen ist der Regler prinzipiell weiter einsatzfähig und bleibt Aktiv. Bei einem Error wird der Regler automatisch inaktiv geschalten und der Fehler muss in der Software quittiert werden bevor der Regler wieder aktiv geschalten werden kann.

10.1. Status-LED

Die GIN-SAC4 Servo-Drives haben diverse LEDs anhand welcher verschiedene Fehler und Warnungen abgelesen werden können. Für eine genaue Fehleranalyse sollte zusätzlich ein Indel Tool benutzt werden.

Kapitel noch nicht Vollständig!

LED	Blinkt gleich wie OK LED	Blink ca. 1.5 mal pro Se- kunde	Blinkt ca. 3 mal pro Sekunde	Leuchtet Konstant
	= OK LED	1 1 [5]	1 [8]	t[s]
Ucc	1.1	1.2	1.3	1.4
Ballast			2.3	
Control			3.3	3.4
Ext Enable				4.4
IMAX / IGBT			5.3	5.4
PWM / Commu- tation	6.1		6.3	6.4
Resolver				7.4
Active				8.4
Motor		9.2	9.3	9.4

10.2. Fehlertabelle

Nr.	Art	Beschreibung	Mögliche Ursachen
1.1	Fehler	Zwischenkreisspannung U _{CC} ist kleiner als das konfigurierte U _{CC MIN}	Netzeinspeisung liegt nicht anNetzspannung zu tief
1.2	Warnung	Zwischenkreisspannung ist kleiner als U _{cc ok}	
1.3	Fehler	Zwischenkreisspannung ist grösser als U _{CC MAX}	Ballast Ausgang funktioniert nichtKein Ballastwiderstand angeschlossen
1.4	OK	Zwischenkreisspannung ist zwischen U _{CC MIN} und U _{CC MAX}	

Nr.	Art	Beschreibung	Mögliche Ursachen
2.3	Fehler	Ballastfunktion geht nicht. Die Zwischenkreisspannung Ucc wird nicht kleiner obwohl Ballastwiderstand eingeschalten ist	 Kein Ballastwiderstand ange- schlossen Fremdeinspeisung, U wird ge- brückt

Nr.	Art	Beschreibung	Mögliche Ursachen
3.3	Warnung	Endstufe ist Warm (ca. 85°C)	Hohe Auslastung und / oderSchlechte Kühlung des Reglers
3.4	Fehler	Endstufe ist zu heiss (ca. 100°C)	Hohe Auslastung und / oderSchlechte Kühlung des Reglers

Nr.	Art	Beschreibung	Mögliche Ursachen
4.4	ОК	Extern Enable Signal liegt an	

Nr.	Art	Beschreibung	Mögliche Ursachen
5.3	Warnung	I ² t ist hoch (zwischen 100 und 110%)oder IMAX wird erreicht	 Motor braucht zu viel Strom I²t ist schlecht konfiguriert
5.4	Fehler	I ² t ist überschritten (> 110%)	 Motor braucht zu viel Strom I²t ist schlecht konfiguriert

Nr.	Art	Beschreibung	Mögliche Ursachen
6.1	Warnung	PWM Modulation erreicht 100%	 Zwischenkreissspannung reicht nicht für geforderte Drehzahl
6.3	Fehler	Maximale mechanische Drehzahl erreicht	 Motor dreht schneller als in Speed Max zugelassen
6.4	Fehler	Autokommutierung fehlgeschlagen	Falsche KonfigurationMechanisches Problem

Nr.	Art	Beschreibung	Mögliche Ursachen
7.4	Fehler	Pegel des Resolver oder SinCos ist ausserhalb des Sin²Cos² _{Min} und Sin²Cos² _{Max} Bereichs	 Kabelunterbruch des Feedbacks Verschmutzter SinCos Massstab Abstand zwischen Sensor und Massstab zu gross oder zu klein

Nr.	Art	Beschreibung	Mögliche Ursachen
8.4	OK	Achse ist aktiv geschaltet und regelt	

Nr.	Art	Beschreibung	Mögliche Ursachen
9.2	Warnung	Motortemperatur ist höher als kon-	· Motor zu heiss
		figurierte Temperatur Warnung	
9.3	Fehler	Motortemperatur ist höher als kon-	· Motor zu heiss
		figurierte Temperatur Maximum	
9.4	Fehler	Überstrom oder Kurzschluss	· Motor überlastet (zu grosse Last)
			 Kurzschluss im Motor oder
			Verdrahtung
			 Endstufe defekt

11. Weiterführende Dokumente

11.1. EG-Konformitätserklärung

Die aktuelle EG-Konformitätserklärung ist unter folgendem Link zu finden:

https://indel.ch/de/dokumente#konformitaet

11.2. SUVA Baumusterprüfbescheinigung für SAC4x4

Baumusterprüfbescheinigung Nr. E 7070/2.d

Objekt: Elektrisches Leistungsantriebssystem

Marke: Indel

Typenbezeichnung: Servo Regler SAC4x4

Sicherheitstechnische Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die An-

Angaben: forderungen von EN ISO 13849-1, Kategorie 4, PL e.

Herstelleradresse: Indel AG

Tüfiwis 26

CH-8332 Russikon

Adresse des Antragstellers: Indel AG

Tüfiwis 26

CH-8332 Russikon

Besondere Bedingungen,

Beilagen:

Weitere Angaben siehe Beilageblatt 1/1

Ablauf der Gültigkeit: 30. September 2029

Das überprüfte Baumuster entspricht den grundlegenden Anforderungen der Richtlinie 2006/42/EG und deren Änderungen des Europäischen Parlamentes und des Rates vom 17. Mai 2006 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mit-

Diese Bescheinigung gilt in Verbindung mit den auf der Rückseite aufgeführten allgemeinen Bestimmungen und den allenfalls vorstehend erwähnten Beilagen.

Europäisch notifiziert, Kenn-Nr. 1246

Ort und Datum: Suva

Luzern, 1. Oktober 2024 Zertifizierungsstelle SCESp 0008

Bereich Technik

Der Sicherheitsingenieur

Urs Bühlmann

Der Zertifizierungsleiter

Daniel Vock

9. Cm

Beilage zu Bescheinigung E 7070/2.d Seite 1 / 1 Luzern, 1. Oktober 2024

Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die folgenden Anforderungen:

Performance Level

EN ISO 13849-1:

Kategorie

4

211100 10040 1.

e

*Diagnosedeckungsgrad DC PFH

99 % (hoch) 2.47 E-8 / h

MTTFd CCF 100 Jahre (hoch) erfüllt

er

EN 62061:

SIL

3

*Der Diagnosedeckungsgrad DC hängt direkt von der externen Auswertung ab. Der DC von 99% muss durch den Integrator kalkuliert und belegt werden.

Um die sicherheitsrelevanten Einrichtungen zu nutzen, müssen die Anforderungen des Herstellers eingehalten werden.

Da es sich um eine elektronische Einrichtung handelt, sind geeignete Massnahmen (Abschirmung, Anwendung von Filtern, etc.), gegen Störeinflüsse (EMV) zu treffen.

Bei der Inbetriebnahme muss der Geräteanwender eine vollständige Funktionskontrolle des Gerätes in Verbindung mit dem damit ausgerüsteten Objekt vornehmen. Dabei ist der Stand der Technik gemäss EN ISO 13849-1/-2 und/oder EN 62061 einzuhalten.

11.3. SUVA Baumusterprüfbescheinigung für SAC4x3

Baumusterprüfbescheinigung Nr. E 7069/2.d

Objekt: Elektrisches Leistungsantriebssystem

Marke: Indel

Typenbezeichnung: Servo Regler SAC4x3

Sicherheitstechnische Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die An-

Angaben: forderungen von EN ISO 13849-1, Kategorie 4, PL e.

Herstelleradresse: Indel AG

Tüfiwis 26

CH-8332 Russikon

Adresse des Antragstellers: Indel AG

Tüfiwis 26

CH-8332 Russikon

Besondere Bedingungen,

Beilagen:

Weitere Angaben siehe Beilageblatt 1/1

Ablauf der Gültigkeit:

30. September 2029

Das überprüfte Baumuster entspricht den grundlegenden Anforderungen der Richtlinie 2006/42/EG und deren Änderungen des Europäischen Parlamentes und des Rates vom 17. Mai 2006 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für Maschinen.

Diese Bescheinigung gilt in Verbindung mit den auf der Rückseite aufgeführten allgemeinen Bestimmungen und den allenfalls vorstehend erwähnten Beilagen.

Europäisch notifiziert, Kenn-Nr. 1246

Ort und Datum:

Suva

Luzern, 1. Oktober 2024

Zertifizierungsstelle SCESp 0008

Bereich Technik

Der Sicherheitsingenieur

Der Zertifizierungsleiter

Urs Bühlmann

Daniel Vock

0.04

Beilage zu Bescheinigung E 7069/2.d Seite 1 / 1

Luzern, 1. Oktober 2024

Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die folgenden Anforderungen:

EN ISO 13849-1:

Kategorie

Performance Level *Diagnosedeckungsgrad DC

99 % (hoch) 2.47 E-8 / h

MTTFd CCF

100 Jahre (hoch)

erfüllt

EN 62061:

SIL

3

*Der Diagnosedeckungsgrad DC hängt direkt von der externen Auswertung ab. Der DC von 99% muss durch den Integrator kalkuliert und belegt werden.

Um die sicherheitsrelevanten Einrichtungen zu nutzen, müssen die Anforderungen des Herstellers eingehalten werden.

Da es sich um eine elektronische Einrichtung handelt, sind geeignete Massnahmen (Abschirmung, Anwendung von Filtern, etc.), gegen Störeinflüsse (EMV) zu treffen. Bei der Inbetriebnahme muss der Geräteanwender eine vollständige Funktionskontrolle des Gerätes in Verbindung mit dem damit ausgerüsteten Objekt vornehmen. Dabei ist der Stand der Technik gemäss EN ISO 13849-1/-2 und/oder EN 62061 einzuhalten.

SUVA Baumusterprüfbescheinigung für SAC4x2 11.4.

Baumusterprüfbescheinigung Nr. E 7107/2.d

Objekt:

Elektrisches Leistungsantriebssystem

Marke:

Indel

Typenbezeichnung:

Servo Regler SAC4x2

Sicherheitstechnische

Angaben:

Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die An-

forderungen von EN ISO 13849-1, Kategorie 4, PL e.

Herstelleradresse:

Indel AG Tüfiwis 26

CH-8332 Russikon

Adresse des Antragstellers:

Indel AG Tüfiwis 26

CH-8332 Russikon

Besondere Bedingungen,

Beilagen:

Weitere Angaben siehe Beilageblatt 1/1

Ablauf der Gültigkeit:

30. September 2029

Das überprüfte Baumuster entspricht den grundlegenden Anforderungen der Richtlinie 2006/42/EG und deren Änderungen des Europäischen Parlamentes und des Rates vom 17. Mai 2006 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mit-

Diese Bescheinigung gilt in Verbindung mit den auf der Rückseite aufgeführten allgemeinen Bestimmungen und den allenfalls vorstehend erwähnten Beilagen.

Europäisch notifiziert, Kenn-Nr. 1246

Ort und Datum:

Luzern, 1. Oktober 2024

Zertifizierungsstelle SCESp 0008

Bereich Technik

Der Sicherheitsingenieur

Urs Bühlmann

Der Zertifizierungsleiter

Daniel Vock

9.04

Beilage zu Bescheinigung E 7107/2.d Seite 1 / 1

Luzern, 1. Oktober 2024

Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die folgenden Anforderungen:

EN ISO 13849-1:

Kategorie

Performance Level

99 % (hoch) 2.47 E-8 / h

*Diagnosedeckungsgrad DC **PFH MTTFd**

100 Jahre (hoch)

CCF

erfüllt

EN 62061:

SIL

3

*Der Diagnosedeckungsgrad DC hängt direkt von der externen Auswertung ab. Der DC von 99% muss durch den Integrator kalkuliert und belegt werden.

Um die sicherheitsrelevanten Einrichtungen zu nutzen, müssen die Anforderungen des Herstellers eingehalten werden.

Da es sich um eine elektronische Einrichtung handelt, sind geeignete Massnahmen (Abschirmung, Anwendung von Filtern, etc.), gegen Störeinflüsse (EMV) zu treffen.

Bei der Inbetriebnahme muss der Geräteanwender eine vollständige Funktionskontrolle des Gerätes in Verbindung mit dem damit ausgerüsteten Objekt vornehmen. Dabei ist der Stand der Technik gemäss EN ISO 13849-1/-2 und/oder EN 62061 einzuhalten.

11.5. SUVA Baumusterprüfbescheinigung für SAC4x1

Baumusterprüfbescheinigung Nr. E 7106/2.d

Objekt: Elektrisches Leistungsantriebssystem

Marke: Indel

Typenbezeichnung: Servo Regler SAC4x1

Sicherheitstechnische Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die An-

Angaben: forderungen von EN ISO 13849-1, Kategorie 4, PL e.

Herstelleradresse: Indel AG

Tüfiwis 26

CH-8332 Russikon

Adresse des Antragstellers: Indel AG

Tüfiwis 26

CH-8332 Russikon

Besondere Bedingungen,

Beilagen:

Weitere Angaben siehe Beilageblatt 1/1

Ablauf der Gültigkeit: 30. September 2029

Das überprüfte Baumuster entspricht den grundlegenden Anforderungen der Richtlinie 2006/42/EG und deren Änderungen des Europäischen Parlamentes und des Rates vom 17. Mai 2006 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für Maschinen.

Diese Bescheinigung gilt in Verbindung mit den auf der Rückseite aufgeführten allgemeinen Bestimmungen und den allenfalls vorstehend erwähnten Beilagen.

Europäisch notifiziert, Kenn-Nr. 1246

Ort und Datum: Suva

Luzern, 1. Oktober 2024 Zertifizierungsstelle SCESp 0008

Bereich Technik

Der Sicherheitsingenieur

Urs Bühlmann

Der Zertifizierungsleiter

Daniel Vock

9. ch

Beilage zu Bescheinigung E 7106/2.d Seite 1 / 1 Luzern, 1. Oktober 2024

Die Sicherheitsfunktion STO gemäss EN 61800-5-2 erfüllt die folgenden Anforderungen:

EN ISO 13849-1:

Kategorie

4 e

Performance Level

99 % (hoch)

*Diagnosedeckungsgrad DC PFH

2.47 E-8 / h

MTTFd

100 Jahre (hoch)

CCF

erfüllt

EN 62061:

SIL

*Der Diagnosedeckungsgrad DC hängt direkt von der externen Auswertung ab. Der DC von 99% muss durch den Integrator kalkuliert und belegt werden.

Um die sicherheitsrelevanten Einrichtungen zu nutzen, müssen die Anforderungen des Herstellers eingehalten werden.

Da es sich um eine elektronische Einrichtung handelt, sind geeignete Massnahmen (Abschirmung, Anwendung von Filtern, etc.), gegen Störeinflüsse (EMV) zu treffen.

Bei der Inbetriebnahme muss der Geräteanwender eine vollständige Funktionskontrolle des Gerätes in Verbindung mit dem damit ausgerüsteten Objekt vornehmen. Dabei ist der Stand der Technik gemäss EN ISO 13849-1/-2 und/oder EN 62061 einzuhalten.

11.6. CB Test Zertifikat

12. Normen

Folgende Normen sind angewendet worden

EN 60204-1: 2006 / A1: 2009

Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen

Teil 1: Allgemeine Anforderungen Sicherheitsgerichteter Abschaltung nach Stopp-Kategorie 1 und Sicherstellung des Schutzes gegen Wiederanlauf

EN ISO 13849-1: 2015

Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen

Teil 1: Allgemeine Gestaltungsleitsätze

EN ISO 13849-2: 2012

Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen

Teil 2: Validierung

EN 61800-3:2004 + A1:2012

Drehzahlveränderbare elektrische Antriebe.

Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren

EN 61800-5-1: 2007 + A11:2021

UL 61800-5-1:2012/R:2018-06

Elektrische Leistungsantriebsysteme mit einstellbarer Drehzahl -

Teil 5-1: Anforderungen an die Sicherheit - Elektrische, thermische und energetische Anforderungen

EN 61800-5-2: 2017

Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl-

Teil 5-2: Anforderung an die Sicherheit - Funktionale Sicherheit

SN EN ISO 12100-1: 2010

Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze - Risikobewertung und Risikominderung

EN 62061:2005 + A2:2015

Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme