

Indel SAC-Drives Commissioning Manual

Rev 1.36 © Indel AG, 02.04.2016

Table of contents

1	Intro	duction	7
1 2 3	1.1	General notes	7
	1.2	Overview of the document	7
2	INIX-	Motion	8
	2.1	Operation	8
	2.2	Logger	9
	2.3	Loading firmware, motor configuration, controller configuration	11
	2.4	Burning dt2 configuration files	14
	2.5	Test Modi	
3	Moto	r configuration	16
	3.1	Version control for motor configuration	16
	3.2	Firmware Version	
	3.3	Absolut Encoder	
	3.3.1	Specification of absolute encoders	
	3.3.2	Configuration of absolute encoders	
	3.3.3	Actual values for absolute encoders	
	3.3.4	Errors	21
	3.3.5	Examples	
	3.4	Encoder	24
	3.4.1	Configuration of incremental encoder at encoder feedback	24
	3.4.2	Configuration of incremental encoder at SinCos interface	24
	3.4.3	Actual values for incremental encoders	
	3.5	Resolver	25
	3.5.1	Configuration of resolver	
	3.5.2	Actual values for resolvers	
	3.6	SinCos	
	3.6.1	Configuration of SinCos	
	3.0.2	Configuration of incremental encoder at SinCos Interface	21
	3.0.5	Checking the sine cosine / resolver level	27 28
3	3.8	Auto-commutation	
	3.8.1	Configuration of the auto-commutation	
	3.8.2	Auto-commutation with UVW pulse	
	3.8.3	Auto-commutation with the two-phase stepper method	
	3.8.4	Auto-commutation with absolute encoders	
	3.8.5	Auto-commutation with 360° field rotation	
	3.8.6	"Not Unwind" flag (360° commutation)	
	3.8.7	Auto-commutation with hall sensors for Maxon motors	
	3.8.8	Actual values for auto-commutation	
	3.9	Current controller: Current Control	40
	3.9.1	Current controller variants	
	3.9.2	Current controller parameters	

	3.9.3	I2t control	42
	3.10	Extern Enable	43
	3.10.1	Configuration of the external enabler input	43
	3.10.2	Configuration of the emergency stop braking ramp	
	3.10.3	Actual values for the external enabler	45
	3.11	Feedback Motor Field	46
	3.12	Feedback position control	47
	3.13	GinLink	48
	3.14	Motor	50
	3.14.1	Motor configuration	50
	3.14.2	Converting Ke for linear motors	54
	3.14.3	Converting Ke for Maxon motors	
	3.15	PWM settings	55
	3.16	Position controller	56
	3.16.1	Configuration of the position controller	57
	3.17	Power Supply	59
	3.18	Speed Filter	60
	3.18.1	Average Speed-Filter	60
	3.18.2	Speed Observer	60
	3.19	Actual hardware values	62
	3.20	Porting Info-link motor configuration files on GinLink	63
4	Safet	y configuration	64
	4.1	Operation with Safe Torque Off (STO)	64
	4.2	Engaging Safe Torque Off	66
5	IMD c	onfiguration	68
	5.1	GinLink configuration in IMD	68
	5.2	Axis configuration in IMD	69
	5.2.1	Motor.dt2	69
	5.2.2	PosCtrl.dt2	69
6	Contr	oller configuration	70
7	Error	message from the servo drive	71
	7.1	Error messages	
	72	Warnings	71
0	Indol	nosition controllor	70
0	muer		
	8.1	Move commands	72
	8.2	Error messages from the position controller in the fieldbus master	73
	8.2.1	Moving axes	74
9	Trape	zoid controller	75
	9.1.1	ACS-Show	75
	9.1.2	Specifications for trapezoid and S profile	75
	9.1.3	Control constants	

	10.21	Fine-tuning of Ke, Rs and Ls	108
	10.20	Adjusting lead values	107
	10.19.2	Procedure for adjusting the PID parameters	
	10.19.1	Optimisation procedure according to Ziegler-Nichols	
	10.19	Adjusting PID parameters	
	10.18.2	SinCos encoder adjustment	
	10.18.1	Resolver adjustment	
	10.18	Gain offset correction for resolvers and SinCos	97
	10.17	Verifying the direction of rotation (after commutation)	
	10.16.3	Adjusting the resolver offset by hand	
	10.16.2	Auto-commutation with absolute encoders	
	10.16.1	Auto-commutation with sine-cosine and incremental encoders	
	10.16	Commutation	
	10.15	Adjusting the current controller	91
	10.14	Verifying the direction of rotation (before commutation)	90
	10.13	Finding and verifying the number of pole pairs	89
	10.12	Position controller	88
	10.11	Power	
	10.10	PWM	
	10.9	External controller release	
	10.8	Checking the actual position in the fieldbus master	87
	10.7.3	Checking the resolution of the encoder	87
	10.7.2	Standard direction of rotation	
	10.7.1	Checking the direction of rotation	86
	10.7	Commissioning the feedback system	86
	10.6	Configuring the fieldbus communication in the software	85
	10.5.1	Configuration example	
	10.5	Configuring fieldbus communication on the controller	84
	10.4	Configuring feedback	83
	10.3.4	Iemperature sensor in the motor cables	82
	10.3.3	Limit switch in the motor cables	
	10.3.2	Temperature limit switch in resolver/SinCos cable	
	10.3.1	Temperature sensor in resolver/SinCos cable	80
	10.3	Temperature switch	80
	10.2	Enter motor parameters	79
	10.1	Protecting the motor against overload	79
10	Step-b	oy-step commissioning	79
	9.1.10	Error messages	
	9.1.9	Standard factors	
	9.1.8	Operating mode, VRG_TST	
	9.1.7	Standardisation, VRG_FLG	77
	9.1.6	Move commands, VRG_BEF	
	9.1.5	Axis status	
	9.1.4	Actual values	

	10.22	Removing resonance	109
11	Bode	110	
	11.1	Motion tool settings	110
	11.2	PID Wizard settings	
	11.3	Recording a bode sweep	
	11.4	Procedure for optimising the control route	
	11.5	Evaluating a bode sweep	
	11.6	Effect of the PID parameters	
	11.7	Current filters	
	11.8	Ontimisation roles	121
	11.8.1	Observer Filter	
	11.8.2	Average Filter	
	11.9	Gantries	
12	Com	nissioning a stepper motor without feedback	
13	Firmy	vare undate, narameter undate	126
15	1211	Undetee to personators and software	126
	13.1.1	Burning firmware or motor parameters to the flash prom	
	13.1.3	Saving motor parameters in a file	
	13.1.4	Copying parameters from the RAM into the flash prom	
	13.1.5	Information	
	13.1.6	Automating flash PROM updates	
	13.1.7	Version and assistance	
	13.1.8	Updates with a laptop	
	13.2	Emergency system	
14	Troub	le Shooting	130
	14.1	INFO-link problems	130
	14.2	Problems with analogue encoders: SinCos, Resolver	130
	14.3	Soiling	
	14.4	Supply	
	14.4.1	Intermediate circuit voltage	
	14.4.2	Voltage dips	
	14.4.3	Supply to MAX board	
	14.5	Last	
	14.6	PID-Parameter	
	14.7	Disruptions	136
	14.8	Lead values	
	14.9	Standardisation errors	
	14.10	Incorrect Ke	139
	14.11	Incorrect resolver offset	140
15	Furth	er documentation	
40	1.1-4	f General	4 6 6
16	LIST O	T TIgures	150

17	Document status152
----	--------------------

1 Introduction

1.1 General notes

Please read this documentation, and other documentation to which it refers, fully before installation and commissioning. Incorrect handling of the modules can lead to personal injury or property damage. Ensure that the technical details and information on connection conditions, as well as all provisions, are complied with.

1.2 Overview of the document

Section 2 provides a rough description of how to operate the new INIX tools from Indel.

Section 3 goes into detail on the many individual parameters of the motor configuration file.

Section 4 contains information on operation with Safe Torque Off, which is provided by the SAC3 controllers.

Section 5 illustrates the configurations needed on the software side for trouble-free operation. In particular, it highlights the parameters that must be identical in the SAM configuration and on the controller and/or in the motor configuration file.

Section 6 provides brief information on the controller configuration file. This is usually not of interest to the user.

Section 7 describes error messages in the drive that were not directly evaluated in the past. However, today they are evaluated directly on the controller and are visible to the user.

Section 8 discusses the position controller and its individual commands.

Section 9 briefly describes the ACS-Show tool and the settings for the trapezoid controller.

Section 10 offers instructions for the commissioning of an axis. You should go through this section step by step when commissioning.

Section 11 describes how to carry out a bode sweep with the axis tool. The Indel Axis Tuner tool, which is also described in this section, is used to adjust PID parameters and configure current filters. This means that even complex control routes can now be stabilised with little effort.

Section 12 describes how to commission open-loop stepper motors, i.e. stepper motors that are run without feedback.

2 INIX-Motion

2.1 Operation

The Inix-Motion is required for commissioning of the motor, together with the logger tool Inix-Varlog.

	鱒 X (NET191	/X) - motion					
	🕶 🗸 Config					✓ motion	
	Actual	X -0.00	5493 °	1.0000		Activate F4	
	Control	item	value unit	← → Toggle	▼ +	Simulate F5 InActivate F3	<
	✓ Motor	Office Address	Megomat_Bulli 0xE83A1004	item 8.8 cmdPos1	value uni 1440.00 °	Toggle	
	Test	- 00 Version 	3.20	00 Delay 00 Count	0.00000 ° 10 ms 0 cnt	To Pos 2 F7	
	Burn Files	abc Typ	Megomat_Bulli 23.11.2004-FB		(✓ Endless	
		- ever Hag - Enable - Conclink	ux00000000 Flags Ext_En & Cmd_Ch_0	•		Neg Accept F2	
	Axis	Br Absolute_Encoder	none			Stop F8 Zero	
	Encoder FieldTest	B Cos	none				
	Commutation	FB_PositionCtrl	Resolver Observer			▼ File	_
	SinCos	B Control Ctrl	PID Position PI (I max red)			Load	
	Poscen ▼ Debug	B C FB_MotorField B C Motor	Resolver 3Phase PM synchron			 ■ Motor 	
	Explorer Memory	B C Outputs				✓ Invisible	
	Events About INIX					✓ Internal✓ Overloaded	
						✓ File Save	
		► Properties		Properties		Load	
		💽 🛶 💒 🗐 🗹 🖓 Axis NET 191/X: Stop		NET 191/X	0 🛋 🚺	-	

Fig. 1: INIX Motion

- 1) All actual values for the axis
- 2) Configuration of the drive (incl. drive sampling rate)
- 3) Motor configuration
- 4) Test window: current mode, voltage mode, commutation, etc.
- 5) Loading of configuration files and drive software
- 6) Various commissioning aids
- 7) Commissioning assistants
- 8) Debug: variable explorer, memory dump, etc.
- 9) Symbol for external release, axis active
- 10) Move commands
- 11) Endlos fahren
- 12) Parameter window: predefined parameter sets, own parameter sets
- 13) Loading/saving of motor and/or controller configuration files
- 14) Display/hide internal or invisible parameters
- 15) Target selection

2.2 Logger

The Indel variables logger is integrated into the motion tool:

Fig. 2: Variables logger

The variables logger displays the speed in MotInc/T.

- Motinc Motor increments: The encoder resolution in the controller is standardised at 4096 increments per motor revolution. In the case of high-resolution SinCos encoders with, for example, 1'048'576 increments resolution, you will get motor increments with decimal places.
- T Sampling period: Depending on the settings, the sampling frequency in the controller is 8kHz, 12kHz, 16kHz, 24kHz oder 32kHz

Calculation of speed in %

- v Speed in °/s
- f Sampling frequency in Hz

$$v = \frac{MotInc/T \cdot f \cdot 360}{4096}$$

Calculation of the following error

s	Path in	mm
К	Spindle pitch in	mm
Ρ	Pole spacing in	mm

G Gear factor; only required when the feedback system is attached to the motor and the gearbox is downstream.

for rotational motors:

$$s = \frac{MotInc \cdot 360 \cdot G}{4096}$$

for spindle motors:

$$s = \frac{MotInc \cdot K \cdot G}{4096}$$

for linear motors:

$$s = \frac{MotInc \cdot P}{4096}$$

2.3 Loading firmware, motor configuration, controller configuration

The motion tool allows the motor configuration, controller configuration and firmware to be loaded into all motion boards and servo controllers.

Fig. 3: Loading firmware, motor/controller configuration

- Selection of firmware, e.g. GinMAX4.s In the case of GinLink targets, you can also specify the motor_gin.zip file so that the right software is automatically selected and burned to the target.
- 2) Selection of controller configuration

The controller configuration contains adjustment data for the current-voltage measurement, SinCos inputs and the details on the maximum currents of the IGBTs.

Under no circumstances may the controller configuration for a specific motion board or servo drive be loaded into another device. In the worst case scenario, this can lead to the drive being damaged.

- 3) Selection of motor configuration
- 4) See section 13.1.6 Automating flash PROM updates
- 5) -A if this flag is activated, the selected files are always burned to the flash prom.

If the flag is not selected, a check is carried out to find out whether the file to be loaded is more up to date than the file in the flash prom. In the case of firmware, attention is paid to the version; in the case of configuration files, attention is paid to the file date in the parameter: LastUpdate ; see below.

- 6) Message-History Show window
- 7) Start Button for displaying file info

Saving and burning the motor configuration

Once changes have been made to the motor configuration, these need to be saved in a file and burned to the flash prom in the controller. Otherwise, the changes will be lost when the unit is powered off. If an error occurs whilst the parameters are being burned and the drive can no longer be booted, there is an option to boot the drive within the emergency system. Please see section 13.2 Emergency system.

The motor configuration can also be saved and/or burned with the tool ACSUpdate.exe; see section: 13 Firmware update, parameter update

▼ ✓ Config				▶ motion
Actual	Z0 0.000 deg	1.0000		✓ Motor
Control	item	valu	e unit	Invisible
	B MotorConfig 08 Motor_Select	3 EC32_fla	it 🔨 🐴	Internal
 Motor 	abc Typ	EC32_fla	t	✓ Overloaded
	····abc LastUpdate	29.03.2011-F	В	▼ File
Test	🗄 🛅 Enable	Ext_En & Cmd_Ch_	0	
	🕀 🛅 GinLink			Save
Burn Files	E bolute_Encoder	non	e	Load
Contracto	Encoder	Encode	r	Burn
	ter 🔁 Resolver	non	e	
 setup 	Encos	HallSee	e 🔤	Quit
		Encode	s r	
Axis	E C SpeedFilter	Observe	r	
 Assistant 	E C PositionCtrl	PID Positio	n	
✓ Varlog	Filter			
Config	🕀 🛅 CurrentCtrl	PI (I_max_red)	
Cornig	🕀 🛅 FB_MotorField	Encode	r	
View	🖻 🚞 Motor	3Phase PM synchro	n	
▶ Debug	🗄 🛅 PWM			
About INIX	🖲 🍋 Power		~	
	▶ Properties			
	# Message text		~	
	98 16:40:18 acsupdate.exe[10496]: type/version: controller	MAX4 4x2.5A / 16.09.2010-MIB (end 16:40:18)		
	♀ 99 16:40:18 acsupdate.exe[10496]: type/version: motor E	C32_flat / 29.03.2011-FB (end 16:40:19)		
	100 16:40:19 acsupdate.exe[10496]: (end 16:40:19) 101 16:40:19 acsupdate.exe[10496]: actions successfully terminated. (end	16:40:19)		
	♀ 102 16:40:19 Burn finished successfully	,		
	♀ 103 16:53:23 Start: Burn motor config (end 16:53:24)	mater (and 16:52:22)		
	♀ 104 16:55:25 acsupdate.exe[0404]: larger/lype: like 191/20 ♀ 105 16:53:23 acsupdate.exe[8464]: info: multiple axes, checked also	other 3 axes for active state. (end 16:53:23)		
	♀ 106 16:53:23 acsupdate.exe[8464]: status: burning motor parameters	to flash-prom (end 16:53:24)		
		to flash-prom. (end 16:53:24)		
	9 100 16:53:24 acsupdate.exe[8464]: actions successfully terminated. (end	16:53:24)		

Fig. 4: Burning and saving motor configuration parameters

- 1) Motor configuration
- 2) Message-History Show window. Make sure that you observe the text in the message window in order to be sure that the parameters have actually been burned.

The parameters cannot be burned if the axis is still active!

- 3) Save, Load motor configuration into a file. With Load the motor parameters are loaded into the drive's RAM. In order to save the parameters permanently, they also need to be burned to the flash prom using Burn.
- 4) Burn Button for loading the motor configuration into the flash prom. The Burn button turns orange as soon as a motor parameter is changed.

Motor configuration data can also be burned and saved via a context menu, which can be brought up using the right-hand mouse button.

Burning parameters to the flash:

right-hand mouse button in Inco-Tree \rightarrow Motor \rightarrow BurnMotorCfg or right-hand side: File: BurnMotorCfg

Saving parameters

right-hand mouse button in Inco-Tree \rightarrow Motor \rightarrow File \rightarrow Safe/Load or right-hand side File: File: Safe/Load

🗐 ZO (NET19	1/Z0) - motion			
🕶 🗸 Config				🐨 motion
Actual	ZO	0.000	deg 1.0000	Activate F4
Control	item		value	unit Toggle
🗸 Motor	00 Flash_Address 00 Flash_Lenght		EC32_flat 0xE83A1004 0x00000398	To Pos 1 F6 To Pos 2 F7
Test	00 Version 00 Motor_Select		3.20 0 ECO 5	# Findless
Burn Files			motion ► 29.03.2011-FB.	Flags Zero
▶ setup	Enable GinLink Absolute Encoder		Quit VinternalCh_0 Overloaded	► Params
► Assistant	Encoder		Burn Load	Save
▶ Debug	E GinCos		200	Load
About INIX	AutoCommutation		HallSens	BurnMotorCfg
	FB_PositionCtrl		Encoder	- Motor
	SpeedFilter SpeedFilter SpeedFilter SpeedFilter SpeedFilter SpeedFilter SpeedFilter SpeedFilter SpeedFilter		Observer PID Position	✓ Invisible
	B CurrentCtrl		PI (I_max_red) Encoder 3Phase PM synchron	✓ Internal
	PWM			Overloaded
				▼ File
				Save
				Burn
				Quit
	► Properties	An an and a second s		
	💽 🐳 🐗 📗 🖌 🖓 Axis NET:	91/20: Stop	NET 191/Z0	🕑 Log 🧧 🛃

Fig. 5: Saving and burning motor configuration parameters

2.4 Burning dt2 configuration files

Motion boards require configuration for the analogue and digital periphery on the motion board, as well as the configuration of the ramps for all axes.

To do this, a dos box is opened.

Burning an entire dt2 configuration: trans32 SAM192\AX0 -k AX_Config\dt2config -G -B

Burning an individual configuration file: trans32 sio -k -l max-inp.dt2 -b trans32 sio -k -l config\maxbus\digital\ip_adr.dt2 -b

Deleting an entire configuration: trans32 SAM192\AX0 -G -B

Creating a backup of the configuration: trans32 sio -b -W backup

Also see: http://doc.indel.ch/doku.php?id=software:application:trans32

2.5 Test Modi

There are various test modes available for commissioning:

👼 0 (NET191/	0) - motion			
✓ Config		0.000000		✓ motion
Actual	0	-0.090000 deg		Activate F4 Simulate F5
Motor	item	value unit	t item value ur :00 cmdPos 0.0000 de;	InActivate F3 Toggle
✓ Test	±00 U_torque ±00 U_reactive	AutoCommutation Vrm Set_Current Vrm Set_Voltage Vrm Field_Rotation	15 ±00 cmdPosi 720.00 dei 15 00 Delay 250 ms 00 Count 0 cnt	To Pos 1 F6 To Pos 2 F7
Burn Files		Bode_sweep		Accept F2 Stop F8
▶ setup				Zero Params
► Assistant				▶ File
 Varlog Debug 				▶ Test
About INIX	▶ Properties		▶ Properties	Quit
	💽 🐇 🐇 🗊 (🖌 🖓 Axis NET 191/0: Stop	NET191/0 💿 🔟 🚨 🧕	

Fig. 6: Test-Modi

AutoCommutation	Auto-commutation: automatic adjustment of the field offset.
Set_Current	Current mode: setting of a constant active or idle current. Commutation is not yet required in this mode.
Set_Voltage	Voltage mode: setting of a constant active or idle voltage. Commutation must have been carried out for this mode.
Field_Rotation	Field mode. Commutation is not yet required in this mode.
Bode_sweep	Plotting of a bode diagram.

The individual test modes are described in detail in the following sections.

3 Motor configuration

3.1 Version control for motor configuration

👼 X (NET191/	X) - motion			
✓ Config			▼ motion	
Actual	X 0.000000 °	, 1.0000	Activate	F4 F5
			InActivat	e F3
Control	item	value	unit Toggle	
	E 🛅 MotorConfig	Megomat_Bulli	To Pos 1	F6
✓ Motor	00 Flash_Address	0xE83A1004	10 POS 1	го
	00 Flash_Lenght	0x00000398	To Pos 2	F7
	00 Version	3.20	► Endless	
Test	00 Motor_Select	0	# Accept	=2
	abc Typ	Megomat_Bulli	Accept	14
Burn Files	abc LastUpdate	23.11.2004-FB	Stop	F8
burnries	00 Flag	0x0000000	Flags Zero	
	🕀 🧰 Enable	Ext_En & Cmd_Ch_0	> Parame	
🔺 setup	E GinLink		- rt-	
	Absolute_Encoder	none	- File	
Axis	E Coder	Roselver	Save	
Encoder	E SinCos	Resolver	Load	
FieldTest		360deg FieldRotation	BurpMoto	vrCfo
TieluTest	EB PositionCtrl	Resolver	Durninote	rcig
Commutation		Average	✓ Motor	
Assistant	The Position Ctrl	PID Position		
▶ Debug	Filter	12010010	✓ Invisible	
- Debug	CurrentCtrl	PI (I max red)		
About INIX	E FB MotorField	Resolver	✓ Internal	
	1 Motor	3Phase PM synchron		
	De PWM			
	🕀 🛅 Power		✓ Overloa	ded
	Outputs			
			► File	
			Burn	
	▶ Properties			
	💽 🐝 🛶 🗊 🚱 🗸 🎐 Burn finished su	ccessfully NET 191/X	Log 🚨 🗾 🔍	

Fig. 7: INIX Motion

LastUpdate This parameter is used for the customer's version of the file.

Type Enter motor type here.

Version: Internal version number of motor configuration file structure.

The parameter Version must not be adjusted! This is the version number of the motor configuration file structure.

This number is needed by the drive software in order to interpret various versions of the file (older generations of controllers).

In the case of multiple drives or motion boards such as SAC3x3, MAX2, MAX4 and AX4 with a firmware version older than Rev. 6.413 - 847 (Rev. 6.4D - 847), a motor configuration file must be loaded into the drive for all motors.

If only one motor configuration file has been loaded, the analogue and digital I/Os will not be affected!

From firmware version Rev. 6.413 – 847, a motor configuration file must at least be loaded for axis 0.

3.2 Firmware Version

The firmware version can be viewed via the motion tool or in Inco-Explorer:

In the motion tool under Burn Files deactivate all check boxes, then press Start . In the Message-History the firmware version is displayed, along with the version of the motor configuration and controller configuration.

- 1) Check-Boxen deactivate
- 2) Burn Files menu
- 3) File versions
- 4) Message-History Show window
- 5) Start Button for displaying file info

🔞 Explorer				
		4		▶ Explorer
item	value	unit		
			^	0.4
	610636340, GIN-MAX4 4x2.5A, B.0, 3D			Quit
⊕ @ T2				
⊕ @ T3				
⊡ · @ Z0				
⊞ @ Z3				
🕀 🛅 Ax				
🕀 🛅 Control				
🕀 🛅 Ctrl				
🕀 🛅 DatabaseTables				
🕀 🧰 EvtLog				
🕀 🛅 FieldBus				
🕀 🛅 Image				
📮 🛅 Software	6.4.13.840-trunk			
⊞abc Revision	6.4.13.840-trunk			
🗄 🛅 Modules				
🗄 🗁 Project				
🕀 🧰 Target	610636340, GIN-MAX4 4x2.5A, B.0, 11			
🕀 🛅 Watchpoint				
🗄 🛅 Stream			~	
▶ Properties				
E 🐇 🐇 🀇 🗊	💿	10 🔝	>	

Fig. 9: Firmware version in Inco-Explorer

3.3 Absolut Encoder

The refresh rate of all absolute encoders in 1ms.

3.3.1 Specification of absolute encoders

Selection of encoder systems:

Endat	max. 26-bit data (increments per revolution + revolutions) Clock frequency: 400kHz
Hiperface	max. 48-bit data (increments per revolution + revolutions) Clock frequency 9600 bits / s
SSI	max. 32-bit data (increments per revolution + revolutions) Clock frequency 400kHz
Used as Encoder	An incremental encoder can also be connected to the absolute encoder input. This applies to the following drives: SAC3x3 und AX4 This allows even fast digital encoder signals to be processed.
	For more details, see Hardware-Manual-Motion-Boards.pdf and Hardware-Manual-SAC3.pdf
	The configuration of the encoder stays in the sub-folder Encoder.

3.3.2 Configuration of absolute encoders

Inco path for configuring absolute encoders: Ctrl.MotorConfig.Absolute_Encoder

IncPerMotorTurn	Number of increments per motor revolution. For linear motors, enter the number of increments per pole spacing. This parameter is only required for auto-commutation.
BitsPerEncTurn	Number of bits per encoder revolution. Take this value from the encoder data sheet.
NrOfEncTurns	For multi-turn encoders: enter the number of turns here. For single-turn encoders, you must enter 1 here.
Flags:	
GrayCode	0 for encoder without gray code
	1 for encoder with gray code
direction	0 for CW
	1 for CCW

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str					
<u>File H</u> elp					
item	value	unit	^		
🗄 💼 Absolute_Encoder	EnDat				
Absolute_Encoder	EnDat				
-±00 IncPerMotorTum	0	Inc			
-±00 BitsPerEncTum	13	Bits			
-±00 NrOfEncTums	0	Tums			
🕂 00 Flag	0×0000				
- 00 Flag	0×0000				
>→ GrayCode	0				
L→→ direction	0		\mathbf{v}		
\\markus\SIU_Uk					

Fig. 10: Absolute encoder configuration

3.3.3 Actual values for absolute encoders

Inco path for actual values of absolute encoders: Ctrl.Actual.Absolute_Encoder

Status	0 1 2 3	Request data Read data Reset Hardware Reset	
Turns	Numbe	r of turns (only for multi-turn encoders)	
Position	Position in increments		
Error	Error co	ode; see below	
Ok_Reads	Number of messages received		
Error_Reads	Numbe	r of messages with errors received	

Inco Explorer - C:\IMD\Bin\IncoExp.str		×
<u>File</u> <u>H</u> elp		
item value	unit	^
🗌 📄 🧰 Absolute_Encoder 7201	Inc	
1 -±00 Status		
00 Tums 0	Tum	
200 Position 7201	Inc	
+ 00 Error 0x0000000	Err #	
		-
L Leo0 Error_Reads 0		
🕂 🧰 Controller 27.4	°C	
🕂 💼 CurrentCtrl 0.034	Arms Abs	-
🕂 💼 Enable		
1095 Encoder 4095	Inc	
🕂 💼 Errors 0x0000083	Flags	
FB_MotorField 1024	FidInc	
🕂 💼 InfoLink		
🕂 🧰 Motor 258.5	°C	
🕂 💼 Outputs		
🕂 💼 PositionCtrl 🛛 🛛 standby		
0.6	Vdc	~

Fig. 11: Actual values, absolute encoder

3.3.4 Errors

Error flags from Endat

Busy	Interface is busy
Overrun	Error from UART
Framing	Error from UART
Parity	Error from UART
Timeout	The entire message was not received during the timeout time of 1ms
Alarm	Encoder alarm bit; see specification of encoder
CRC	Checksum error; occurs if, for example, the number of bits is incorrect.

E II	nc	o Explorer - C:\IMD\Bin\IncoExp.st	tr		×
Eile Help					
item			value	unit	^
		🖃 🚞 Absolute_Encoder	7201	Inc	
		-±00 Status	1		
		-±00 Tums	0	Tum	
		-±00 Position	7201	Inc	
		00 Error	0x0000000	Err #	
		- л г Busy	0		
		- JL Overrun	0		
		- J J Framing	0		
		- JU Parity	0		
		-JII Timeout	0		
		- Ju r Alarm	0		
			0		
		-±00 Ok_Reads	85787		
		-±00 Error_Reads	0		
		主 🚞 Controller	26.7	°C	
		主 🚞 CurrentCtrl	0.039	Arms Abs	
		主 🚞 Enable			~
\\markuis\SiU`jUk				11.	

Fig. 12: Absolute encoder error, Endat

Error flags from Hiperface encoder

Interface is husy
Error from UART
Error from UART
Error from UART
The entire message was not received during the timeout time of 1ms
Encoder alarm bit; see specification of encoder
Checksum error; occurs if, for example, the number of bits is incorrect.

To Inco Explorer - C:\IMD\Bin\IncoExp.st	r		×		
<u>File H</u> elp					
item	value	unit	^		
🖃 🧰 Absolute_Encoder	8191	Inc			
±00 Status	1				
±00 Tums	0	Tum			
±00 Position	8191	Inc			
- 00 Error	0x0000010	Err #			
- л г Busy	0				
- л г Overrun	0		Ξ		
- JJ Framing	0				
- л Parity	0				
- Ju Timeout	1				
Lange Csum	0				
±00 Ok_Reads	0				
L ±00 Error_Reads	164				
主 🧰 Controller	27.4	°C			
🛨 🧰 CurrentCtrl	0.042	Arms Abs			
主 🧰 Enable					
🛨 🧰 Encoder	4095	Inc			
Errors	0x0000083	Flags	*		
Villaikus/SIO JOK			11.		

Fig. 13: Absolute encoder error, Hiperface

Error flags from SSI (synchronous serial interface)

Busy Interface is busy

Ok_Reads The SSI protocol cannot carry out a check such as parity bit or CRC. For this reason, all read-in values are recognised as ok, even if no encoder is plugged in.

🐨 Inco	Explorer - C:\IMD\Bin\IncoExp.st	r		×
<u>File H</u> elp)			
item		value	unit	^
	-0.0 test3	0.000	?	
	-0.0 test4	0.000	?	
	-0.0 test5	0.000	?	
	-0.0 test6	0.000	?	
	-0.0 U_reactive	0.000	Vms	
	-0.0 U_torque	0.000	Vms	
	-0.0 Ucc	0.9	Vdc	
	E C Absolute_Encoder	8191	Inc	
	-±00 Status	1		
	±00 Tums	0	Tum	
	±00 Position	8191	Inc	
	- 00 Error	0x0000000	Err #	
	LIT Busy	0		
	±00 Ok_Reads	132887		
	L±00 Error_Reads	0		
	🕂 💼 Controller	27.3	°C	
	🕀 🧰 CurrentCtrl	0.011	Arms Abs	
)) markus)				
- Amainas	SIG JOK			11.

Fig. 14: Absolute error, SSI

3.3.5 Examples

Endat interface with 26 bits, single-turn, no auto-commutation:

Absolute_Encoder	EnDat
IncPerMotorTurn	0
BitsPerEncTurn	26
NrOfEncTurns	1
Flags: GrayCode direction	0 0

SSI interface with 24 bits, multi-turn, with gray code, no auto-commutation:

Absolute_Encoder	SSI
IncPerMotorTurn	0
BitsPerEncTurn	12
NrOfEncTurns	4096
Flags: GravCode	1
direction	0

3.4 Encoder

3.4.1 Configuration of incremental encoder at encoder feedback

Path in Inco-Tree for incremental encoder configuration: Ctrl.MotorConfig.Encoder

🐨 Inco Explorer - C:\indel\bin\IncoExp.str				X
<u>Fi</u> le <u>H</u> elp				
item		value	unit	^
🛛 🛛 🖾 Enc	coder	Encoder		
	Encoder	Encoder		
00 🖯	Flag	0x000	0	_
	00 Flag	0x000	0	
	L direction		0	
±00	IncPerMotorTum		0 Inc	
L?	Synch_Inp	Enc_Inp_Z		~
Nmárkús/NET 1917X JUK				11.

Fig. 15: Encoder

Encoder	Encoder, zero	o pulse from incremental encoder
Ref_Inp time	Only zero pu	lse
IncPerMotorTurn	Number of in Including 4-q 4096 must be	crements per motor revolution. uadrant evaluation: in the case of an encoder with 1024 strokes, e entered here.
Synch_Inp	no zero pulse	e or zero pulse from incremental encoder
Flag.Direction	Flag = 0: Flag = 1:	CW CCW, inverted counting direction

3.4.2 Configuration of incremental encoder at SinCos interface

If an incremental encoder is connected to and run on the SinCos interface, the configuration is carried out on the SinCos interface (see 3.6.2).

3.4.3 Actual values for incremental encoders

Path in Inco-Tree for actual values for the incremental encoder: Ctrl.Actual.Encoder

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str			×
<u>F</u> ile <u>H</u> elp			
item	value	unit	^
Encoder	4095	Inc	
±00 MyPos	0	Inc	
 Ref_Inp	0		-
±00 Speed	0	Inc/T	
±00 UserPos	-1	Inc	
±00 UserPosAtSynch	0	Inc	~
Nmarkus/NETTHZ/Into-sac-ITTUK			

Fig. 16: Actual values, encoder

3.5 Resolver

The position of the resolver is read in at 16 bits, fixed.

3.5.1 Configuration of resolver

Path in Inco-Tree for the resolver: Ctrl.MotorConfig.Resolver

En Ir	nco Explorer - C:\indel\bin\lncoExp.	.str		\mathbf{X}
Eile	Help			
item		value	unit	^
	📄 🧰 Resolver	Resolver		
	- ? Resolver	Resolver		
	📄 🕞 00 Flag	0x0000		
	- J I AbsSinCos	0		
	- J J atan	0		_
	- J DisAutoGainAdjust	0		
	- J DisAutoRefPhShift	0		
	Fast	0		
	- 00 Flag	0×0000		_
		0		
	- ? Synch_Inp	Res_Sin		
	-0.0 PolePair	1	ppz	
	-±00 RefPhaseShift	0	step	
	-0.0 Offset_Sin	0.000	adc	
	-0.0 Offset_Cos	0.000	adc	
	-0.0 GainAsym	0.00000	*(1+x)	
	- 0.0 PhaseShift	0.00000	•	
	- 0.0 Sin2Cos2_min	40.000		
	└ 0.0 Sin2Cos2_max	80.000		~
\\mar	kusNNETT9TVX UK			1

Fig. 17: Resolver

PolePa	ir	Number of pool pairs
Sin2Co	s2_max	Maximum of sine2 Cosinus2. Default value: 80
Sin2Co	s2_min	Minimum of sine2 Cosinus2. Default value: 40
DisAuto	oGainAdjust	The amplitude of the resolver generator (reference output) is automatically set by the controller in such a way that Sin2Cos2 is around 60 wherever possible. Correction is switched off with this flag, and primarily only serves the purposes of troubleshooting.
DisAuto	oRefPhShift	The phase shift of the resolver generator (reference output) to the measured sin and cos signals is automatically measured and corrected by the controller. Correction is switched on with this flag, and primarily only serves the purposes of troubleshooting.
Flag	Direction	Direction of rotation of the resolver. (Still wire correctly!)
	Fast	0: Low-pass filter on a resolver with a cut-off frequency of approx. 400Hz 1: Low-pass filter on a resolver with a cut-off frequency of approx. 600Hz
	atan	0: no impact1: low-pass filter switched off. The arctang is calculated and applied directly from the sine and cosine track.

If the low-pass filter is set higher or switched off, more interference may occur. You should always work with the deepest filter possible.

Note

When working with a resolver, the sampling rate set in the servo drive must be 12kHz as a maximum. Otherwise there will be too much attenuation of the level of the sine and cosine values.

3.5.2 Actual values for resolvers

Path in Inco-Tree for actual values for the resolver: Ctrl.Actual.Resolver

🐨 Inco Explorer - C:\indel\bin\IncoExp	.str		×
<u>File H</u> elp			
item	value	unit	^
📄 🚞 🚞 Resolver	3719.000	Inc	
- 00 ADCpot	199	step	
- 00 AutoRefPhShiftState	0		
-±00 AutoRefPhShiftValue	0		
-0.0 Sin	-1002.672	adc	
-0.0 Cos	1535.598	adc	
-0.0 Sin2Cos2	51.350		
±00 Speed	0	Inc/T	
-±00 UserPos	-6032	Inc	
L ±00 MyPos	-6032	Inc	~
\\markus\NET191\X_Uk			11.

Fig. 18: Actual values, resolver

In the event of a "resolver error", the Sin2Cos2 value must be checked first. This must be within the configured limits.

3.6 SinCos

3.6.1 Configuration of SinCos

Path in Inco-Tree for SinCos: Ctrl.MotorConfig.SinCos

🔄 Inco Explorer - C:\IMD\Bin\IncoExp.str			×
<u>F</u> ile <u>H</u> elp			
item	value	unit	^
📄 💼 SinCos	none		
-0.0 FieldOffset	0.00	FldDeg	
-0.0 GainAsym	0.00000	•	
-±00 IncPerMotorTum	0	Inc	
-0.0 Offset_Cos	0.000	adc	
-0.0 Offset_Sin	0.000	adc	_
-0.0 PhaseShift	0.000000	•	Ξ
-0.0 Sin2Cos2_max	0.000		
-0.0 Sin2Cos2_min	0.000		
⊒∿ SinCos	none		
⊒`≻ Synch_Inp	SinCos_Ref		
-±00 SynchQuad	0		
🗀 00 Flag	0x0000		
direction	0		
L 00 Flag	0x0000		v
\\markus\NET192\Into-sac-U_UK	1		1.

Fig. 19: SinCos

IncPerMotorTurn	Number of increases Number of period	ements per motor revolution of the sine cosine values is 10 bit.
	Example: SinCo	os encoder with 2048 strokes: 2048 * 1024 = 2'097'152 Inc/T
Sin2Cos2_max	Maximum of sir	ne2 Cosinus2. Default value: 80
Sin2Cos2_min	Minimum of sine	e2 Cosinus2. Default value: 20
Flag	Direction	Direction of rotation of the SinCos encoder

3.6.2 Configuration of incremental encoder at SinCos interface

If an incremental encoder is connected to and run on the SinCos interface, the configuration is carried out on the SinCos interface.

IncPerMotorTurn	Number of ir (Without 4-q	ncrements per motor revolution * 1024 uadrant resolution)
Sin2Cos2_min	Minimum of	sine2 Cosinus2. Default value: 20
Sin2Cos2_max	Minimum of	sine2 Cosinus2. Default value: 400
Flag	Direction	Direction of rotation of the SinCos encode

Warning: As the incremental encoder is now configured at SinCos, the SinCos must also be defined for position control and GinLink feedback.

3.6.3 Actual values for SinCos

Path in Inco-Tree for actual values for SinCos: Ctrl.Actual.SinCos

Inco Explorer - C:	\indel\bin\IncoExp.	.str		×
<u>File H</u> elp				
item		value	unit	^
🔰 🕴 🖨 🖾 Sir	nCos	-76.000	Inc	
0.0	ð Sin	-0.307	adc	
) Cos	0.535	adc	
0.0	Sin2Cos2	0.000		
-±00	Speed	52	Inc/T	
-±00	UserPos	-128	Inc	
	UserPosAtSynch	0	Inc	
	MyPos	-76	Inc	
	Enc_Alig	0		~
\\markus\NET191\X_Uk				1

Fig. 20: Actual values, SinCos

In the case of a "resolver error" or "SinCos error", the Sin2Cos2 value must be checked first. This must be within the configured limits.

3.7 Checking the sine cosine / resolver level

Change the Inco path to the actual values for the resolver/SinCos: Ctrl.Actual.Resolver Ctrl.Actual.SinCos

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str			
<u>F</u> ile <u>H</u> elp			
item	value	unit	^
🖃 🧰 Resolver	272.188	Resinc	
-0.0 ADCcos	1822.726	adc	
-±00 ADCpot	148	step	
-0.0 ADCsin	808.406	adc	_
-±00 AutoRefPhShiftState	0		
-±00 AutoRefPhShiftValue	7		
- 0.0 Cos	1822.382	adc	
- 00 Inp1Time	0		
-±00 MyPos	-61181	Resinc	
-0.0 Sin	808.344	adc	
-0.0 Sin2Cos2	60.616		
-0.0 Speed	0.000	ResInc/T	
L±00 UserPos	-61181	Resinc	~
\\markus\NET192\Into-sac-U_UK	1		1

Fig. 21: SinCos

The following parameters must be right:

Supply		Resolver		SinCos			
		Maximum	Minimum	Maximum	Minimum		
ADCcos	bits	2048	-	2048	-		
ADCsin	bits	2048	-	2048	-		
ADCpot	bits	255	-	255	-		
Sin2+Cos2	(V ²)	80	40	80	20		

Should certain parameters be near their limit, this can be the cause of sporadic errors in the encoder.

3.8 Auto-commutation

3.8.1

Configuration of the auto-commutation Inco path for auto-commutation: Ctrl.MotorConfig.AutoCommutation

There are various procedures available for auto-commutation:

360deg FieldRotation UVW pulse Two-Phase Stepper	Auto-commutation with 360° field rotation 3 voltage pulses Voltage pulse, motor moves, also suitable for 3-phase motors with suspended load						
Hiperface EnDat SSI	Digital interface, motor does not move Digital interface, motor does not move Digital interface, motor does not move						
<i>Flags</i> ON If Ok=1	If the commutation was successful, the axis remains active.						
	Otherwise the output stage is switched to inactive.						
Again=0	In normal operation, the axis is switched to active after commutation. The operating mode changes from Commutation to Active; Again=0						
	When commissioning, it is necessary to repeat the commutation a few times. To do this, the flag is set to Again = 1 so that the operating mode always remains AutoCommutation.						

Never activate the axis (either in simulation mode or active mode) if the commutation is not working perfectly!

3.8.2 Auto-commutation with UVW pulse

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str						
<u>F</u> ile <u>H</u> elp						
item	value	unit	^			
🖃 💼 AutoCommutation	UVW pulse					
AutoCommutation	UVW pulse					
±00 MeasureInc_min	0	MotInc				
-0.0 Pause	0.000	ms				
-0.0 PulsTime	0.000	ms				
-±00 Retries	0	#	-			
-0.0 Value	0.000	Vms				
📄 📄 00 Flag	0x0000					
Again	0					
- 00 Flag	0x0000					
└→〜 ON_if_ok	0					
主 🚞 CurrentCtrl	PI (I_max_red)					
主 💼 Enable	Ext_En & Cmd_Ch_0					
主 🧰 Encoder	Encoder		~			
\\markus\NET192\Into-sac-U_UK						

Fig. 22: Auto-commutation, UVW pulse

The UVW pulse procedure generates a short voltage pulse at each phase. The field offset is calculated from the resulting movement.

With this commutation method, the motor moves very little. This method is suitable for dynamic motors with low mass and low friction.

MeasureInc_min	20 30 The sum of the	[MotInc] three movements of U, V, W must be greater than
	MeasureInc_m	in so that the commutation is successful.
Pause	20 100 Pause betweer	[ms] the individual pulses
PulsTime	1 5 Pulse duration	[ms] of the three pulses
Retries	0 3 Retries in the c	[#] ase of unsuccessful commutation attempts.
Value=1 3	[Vrms] Voltage value fe	or the pulse

3.8.3 Auto-commutation with the two-phase stepper method

This type of commutation is suitable for stepper motors with feedback and for 3-phase motors with a suspended load. The motor moves jerkily by up to 60 field degrees.

This method is also suitable for motors with an incremental encoder with low resolution (500 strokes per revolution).

The voltage pulse is applied to the motor for the time PulsTime. This causes the rotor to be dragged to a defined position.

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str			
<u>E</u> ile <u>H</u> elp			
item	value	unit	^
🕂 📥 AutoCommutation	Two-Phase stepper		
AutoCommutation	Two-Phase stepper		
-0.0 PulsTime	0.000	ms	
-0.0 Value	0.000	Vms	
🗀 00 Flag	0x0000		
Again	0		
- 00 Flag	0x0000		
ON_if_ok	0		
🕂 🚞 CurrentCtrl	PI (I_max_red)		
🕂 🚞 Enable	Ext_En & Cmd_Ch_0		
🕂 🚞 Encoder	Encoder		
主 🚞 FB_MotorField	PM Resolver		
🛨 🚞 FB_PositionCtrl	Resolver		
🛨 🧰 InfoLink			~
NmárkusNie ĽI 92Nnto-sac-0 J Uk			

Fig. 23: Auto-commutation Two-Phase Stepper

- PulsTime 1000 [ms] Pulse duration for the voltage pulses
- Value 0.5 ... 3 [Vrms] Voltage value for the pulse. Choose the voltage in such a way that IMAX/2 ... IMAX flows.

3.8.4 Auto-commutation with absolute encoders

In the case of axes that must not move before activation, or axes that are held in place with a securing brake, the auto-commutation can be carried out using an absolute encoder.

- Hiperface
- EnDat
- SSI Synchronous serial interface

3.8.5 Auto-commutation with 360° field rotation

This type of commutation is the most precise of them all and should be used wherever possible. The motor moves by 360 field degrees. In the case of motors with one pole pair, this corresponds to one motor revolution; in the case of motors with 10 pole pairs, this corresponds to 0.1 revolutions.

This method is suitable for axes with a large load and high friction, as well as for highly dynamic axes.

Flag.Direction	0, 1 [] The direction flag can be used to define the direction in which the field should be turned (positive or negative direction)
Flag.not_unwind	0, 1 [] Following commutation, the axis can be disconnected for a period of approx. 380ms This prevents the motor from becoming overloaded if the commutation is carried out against a mechanical restriction. Do NOT set this flag so that the unloading (unwinding) druchgeführt wird. See section 3.8.6 "Not Unwind" flag (360° commutation).
Max_Delta	10 20 [deg] Following evaluation of the position information, the difference of all offset angles of the measured segments must not exceed the Max_Delta value.
TurnTime	1000 4000 [ms] Time for field rotation, 360° in positive and 360° in negative direction.
	The time should be adapted to match the pole pairs of the motor. Allow motors with just one pole pair to rotate at at least 2000ms.
	Configure longer times for motors with a large load.
Value	$\begin{array}{llllllllllllllllllllllllllllllllllll$

3.8.6 "Not Unwind" flag (360° commutation)

The flag not_unwind allows the behaviour to be influenced immediately after the 360° commutation.

If the flag is not set and a pause of 380ms is entered after the 360° field rotation, the active current is set to zero during this time. The position control is activated after the pause and a certain holding current is set.

This mode (not_unwind=0) is not suitable for suspended Z axes, as the axis cannot be held during the pause.

Fig. 24: Flag not_Unwind not set

If the flag is set, there is no pause to relieve the axis. If the axis is pressed against a mechanical restriction after the commutation, an increased current may be applied to the motor after the commutation. See fig. 25.

The mode with the set not_unwind flag requires the I2t control to be optimally set. Otherwise there is a risk that the motor will become overloaded.

Fig. 25: Flag not_Unwind set

3.8.7 Auto-commutation with hall sensors for Maxon motors

HallInp_Seq	Expected sequence of the hall sensor input signals						
HallInp_0	Bit number of the first hall sensor input. The three hall sensors must be connected one after another: e.g. input 0, 1, 2						
	Wire hall sensor 1 to input Inp No						

Wire	hall sensor 2	to input Inp No $+$ 1
Wire	hall sensor 3	to input Inp No + 2

😰 Explorer 📃 🗖 🔀							
item	value unit						
🗖 🗁 AutoCommutation	HallSens	^					
···· 00 AutoCommutation	HallSens						
🖙 00 Flag	0x0000						
00 Flag	0x0000						
··· JL ON_if_ok	0						
	0						
00 HallInp_Seq	0x00513264 fe 0x00513264	_					
±00 HallInp_0	0 Inp Nr						
FB_PositionCtrl	Encoder	~					
▶ Properties							
E 🐇 🐳 I 💿 10 🛽 🖪							

Fig. 26: Hall sensor commutation

Block commutation

Routing phases			I		II	III		IV	V		VI
Commutation angle		0°e	60)°e	120)°e 18	30°e	240)°e 3	00°e	360°€
Hall-Sensor 1	1 20 binary 0										
Hall-Sensor 2	1 21 binary 0								;	1	
Hall-Sensor 3	1 22 binary 0								:		
Hall input sequence	dec		5		1	3		2	6		4

The commutation angle is given in field degrees (°e). Warning: in motors with more than one pole pair, the degrees on the motor shaft do not match the field degrees.

Example:

In a motor with 7 pole pairs, the motor field rotates $7 \times 360^{\circ}e = 2520^{\circ}e$ for one revolution of the shaft.

Configuration of the block commutation

These boards offer block commutation with hall sensors: MAX2, MAX4, AX-4x2, AX-4x4.

An initial rough commutation can be carried out (approx. +-30degrees exactly) with the help of the hall sensors.

An exact commutation value will also be stored at the encoder ref mark. The final commutation will then be determined the first time the mark is run over. This means that two commutations need to be prepared.

Preparation

Commission the motor fully. The following points must be right before the block commutation can be configured:

- The motor's direction of rotation must be correct: Motor winding 1 to U, motor winding 2 to V, motor winding 3 to W
- The direction of rotation of the motor and the encoder system must be correct, i.e. the direction flags for the motor and the encoder in the motor configuration must be correct
- Invert hall sensor inputs if there are no open collector outputs available on the hall sensor:

Fig. 27: Wiring with non-inverted inputs

Fig. 28: Wiring with inverted inputs

The inputs can be inverted in the dt2 configuration; to do this, set the "Inverted" bit.

Procedure

1. Precise commutation at synch mark (zero pulse)

To do this, determine the field offset for the motor as precisely as possible:

e.g. with the mode 360deg FieldRotation followed by fine-tuning in current or voltage mode as per the manual) See section: 10.16.3 Adjusting the resolver offset by hand

• Auto-commutation, e.g. with 360° method, fine-tuning by hand

2. Determine field offset at reference mark

- Set Ctrl.Actual.FB_MotorField.SynchDone = 0
- Set Ctrl.MotorConfig.FB_MotorField.FieldOffset_at_Ref = -1
- Set flag Ctrl.MotorConfig.FB_MotorField.Flag.FieldSynchWithRefInp = 1
- move the motor over the synch mark (zero pulse), either by hand or by allowing the motor to turn slowly.

-> the flag Ctrl.Actual.FB_MotorField.SynchDone becomes 1

-> in Ctrl.MotorConfig.FB_MotorField.FieldOffset_at_Ref

the exact field offset is stored and can thus be burned.

3. Read out hall sensor sequence

The sequence of the hall sensors changes depending on how the motor is connected, or how the direction of rotation is configured.

- select commutation modeCtrl.MotorConfig.AutoCommutation = HallSens
- configure hall sensor inputs: Ctrl.MotorConfig.AutoCommutation.HallInp_0 = Inp_Nr

The three hall sensors must be connected one after another.

- Allow the motor to run in test mode Field_Rotaion At the same time, record the following parameters with the Varlog:
 - Ctrl.Actual.FB_MotorField
 - Ctrl.Actual.AutoCommutation.HallSens_1
 - Ctrl.Actual.AutoCommutation.HallSens_2
 - Ctrl.Actual.AutoCommutation.HallSens_3
- From -2048 Inc e (field angle), read out the sequence of the inputs from left to right: one of the following sequences should appear within a field rotation, depending on the motor direction flag:
 - 0x0062'3154
 - 0x0051'3264

The following value must always be entered in the hall input sequence for the wiring U, V, W – motor winding 1, 2, 3: Ctrl.MotorConfig.AutoCommutation.HallInp_Seq = 0x0051'3264

- Set the parameter Ctrl.MotorConfig.AutoCommutation.FieldOffset = 0.
- Set Ctrl.Actual.FB_MotorField.SynchDone = 0

Commissioning Manual

Hall sensor sequence

Motor-Direction Flag:

Fig. 29: Hall sensor sequence, standard direction of rotation CCW

0

Fig. 30: Hall sensor sequence, standard direction of rotation CW

Channel 1:	light blue	Field angle in increments
Channel 2:	orange	Hall sensor input 1
Channel 3:	pink	Hall sensor input 2
Channel 4:	white	Hall sensor input 3

4. Test the block commutation

- In order to test the block commutation, the flag needs to be set to zero temporarily: Ctrl.MotorConfig.FB_MotorField.Flag.FieldSynchWithRefInp = 0
- Burn motor parameters to the flash prom
- Switch off/on several times with various starting positions
 The axis must be able to at least reach the
 synch mark each time. It may be necessary to use reduced PID settings.

Caution: If the commutation is not right, high currents will flow into the motor and it may turn in the wrong direction! The IMAX can be reduced to protect the motor. The value for I2t-down can be set to 0.98.

 When everything is working, do not forget to put the flag back into the correct position and burn it. Ctrl.MotorConfig.FB_MotorField.Flag.FieldSynchWithRefInp = 1

Possible problems

If the hall sensors do not display exactly 60°e sectors, the accuracy of the commutation deteriorates considerably. This means that the route many not be able to be travelled to the synch mark without the motor resonating.

In order to combat this problem, an adapted PID parameter set can be used to reach the first synch mark:

- reduce kP to 50 ... 80%
- reduce Pos_Int_Max to 1000 ... 5000

In order to check the evenness of the segments, a log should always be made with the individual hall sensor inputs (HallInp_0, 1, 2) and the field angle. Drive the axis at a constant speed.

All signal edges must have the same spacing. In fig. 29 and 30 the segments are very irregular.

3.8.8 Actual values for auto-commutation

Inco path for actual values for auto-commutation: Ctrl.Actual.AutoCommutation The actual values are shown as follows, regardless of the auto-commutation method:

UVW method

E Ir	nco Explorer - C:\indel\bin\IncoExp	.str		×
<u>F</u> ile	Help			
item		value	unit	^
	- 🗀 AutoCommutation	180.000	FldDeg	
	±00 Status	0		
	 ±00 Ok	0	0/1	
	 −0.0 S_U	0.000	MotInc	
	0.0 S_V	0.000	MotInc	
	0.0 S_W	0.000	MotInc	
	-0.0 S_total	0.000	MotInc	
	LoopCnt	0		\mathbf{v}
\\mar	rkus\NET19TX_Uk			

Fig. 31: Actual values, auto-commutation UVW

Status	status of the auto-commutation
ОК	if the commutation was successful, this value is 1, otherwise 0
S_U, S_V, S_W	create the route for the individual U,V,W pulses
S_Total	entire route covered during the commutation. If the S_Total exceeds the value of MeasureInc_min , the commutation is successful.
LoopCount	The loop counter can be used to determine how many attempts the commutation needed before it was successful. See Retries.

Two-phase stepper and absolute encoder method

These two procedures always end successfully.

360° field rotation method

E 🕢 I	nco Explorer - C:\indel\bin\IncoExp	.str		×
<u>F</u> ile	Help			
item	1	value	unit	^
	📄 💼 AutoCommutation	181.934	FldDeg	
	+±00 Status	0		
	-±00 Ok	1	0/1	
	-±00 best_sector_fw	1		
	-±00 best_sector_bw	5		
	-0.0 delta_fw	19.308		
	-0.0 delta_bw	19.512		
	-0.0 act_field	6233.694		
	LoopCnt	0		v
\\ma	ล่หน่งเพียาไปปีโหลายห			

Fig. 32: Actual values, 360° commutation

The field angle under auto-commutation is assumed for the field control in the case of successful commutation.

3.9 Current controller: Current Control

3.9.1 Current controller variants

The target value for the current controller always comes from the upstream PID controller (speed and/or position controller). This target value can be adapted with the following variants.

Output 1 corresponds to the bit I_Red (current reduction). The bit I_Red is set by the fieldbus controller via the fieldbus.

none	
PID # Cmdlq 1 = 1:	Ausgang 1 = 0: Target value for current controller is output from PID controller Output
	Target value is output from PID controller; beneath this is the torque curve CmdIq. Any torque curve can be driven with this function.
PI	Target value for current controller is output from PID controller (position controller), output 1 is not considered
PI (I_max_red)	Ausgang 1 = 0: Current controller limited to Imax Output 1 = 1: Current controller controls on Ired -> constant torque Default setting
PID (CmdIred)	Ausgang 1 = 0: Target value for current controller is output from PID controller Ausgang 1 = 1: Current controller limited to torque curve Ired, operating mode "Ired"
PID + Cmdlq	The curve CmdIq is above the target current (pilot control).
Cmdlq	Apply current curve, without position control

🕞 Inco Explorer - C:\IMD\Bin\IncoExp.str			×
<u>File H</u> elp			
item	value	unit	^
🕒 💼 CurrentCtrl	PI (I_max_red)		
CurrentCtrl	PI (I_max_red)		
-0.0 l2t_down	0.900	*/s	
-0.0 l2t_up	2.000	s	
-0.0 I_Int_Max	57.274	Ams	
-0.0 kld	0.500	ms	
-0.0 klg	0.500	ms	
-0.0 kPd	3.000	•	
0.0 kPq	3.000	•	
主 🧰 Enable	Ext_En & Cmd_Ch_0		
主 🚞 Encoder	Encoder		
🕀 💼 FB_MotorField	PM Resolver		
🕂 💼 FB_PositionCtrl	Resolver		
🗈 🗈 InfoLink			×
NmárkúsNNE É 192Nnto-sac-U Uk			1

Fig. 33: Current controller

3.9.2 Current controller parameters

I_Int_Max [Arms]	Limitation of the I component in the current controller. Dimensioning: I_Int_Max = 3 mal I _{MAX}
Overload protection I2t	
I2t [%]	Shows how much of the power dissipation that the motor absorbs can be re-emitted within the set time constant (I2t_down).
l2t_up_run: [s@l_max]	Time constant for the absorbed power dissipation of the motor while the motor is moving.
I2t_up_halt: [s@I_nom]	Time constant for the absorbed power dissipation of the motor while the motor is at a standstill.
I2t_down: [*/s]	Unloading behaviour of the heat stored in the motor (heat emission via housing, cooling, etc.).
kld [ms]	I component of idle current control
kPd [*]	P component of idle current control
klq [ms]	I component of active current control
kPq [*]	P component of active current control

3.9.3 I²t control

In order to protect the motor from overload, the power dissipation that the motor absorbs is integrated. The power dissipation that the motor emits via the housing and any other ventilation holes is always deducted from this sum. The remaining value must not exceed a certain threshold.

If there is no temperature sensor in the motor winding, the I2t control is the only protection for the motor against thermal overload!

Equivalent circuit diagram for I2t

Default values

l²t_up_run	[s]	0.5 2	for motors with low overload capability
l²t_up_run	[s]	2 4	for motors with high overload capability
l ² t_down	[*]	0.90 0.95	rotational motors
l ² t_down	[*]	0.95 0.98	linear motors, motors with poor heat emission

Loading behaviour

If, for the time $l^2t_up_run$ the current l_max is applied to the motor without it being cooled, the value for l2t = 100%. This value applies whilst the motor is moving.

If, for the time $l^2t_up_halt$ the current l_nom is applied to the motor without it being cooled, the value for l2t = 100%. This value applies whilst the motor is at a standstill.

Unloading behaviour

The value for l^2t_down describes the temperature absorption in the motor: In the case of a value of $l^2t_down = 0.9$ the value for l2t becomes 10% smaller every second In the case of a value of $l^2t_down = 0.98$ the value for l2t becomes 2% smaller every second

Calculation principles

For the calculation of the l2t control, the I_max of the motor is used. The bigger I_max is, the slower the l2t value increases.

If the I_max is much greater than I_nenn (I_ max / I_nenn > 5), this can lead to distortion of the calculation of the I2t value because the value for I2t may increase too slowly.

Linear motors

Special attention must be paid to cooling in the case of linear motors. As the coils are often sealed in epoxy, the emission of heat is not optimal. This can lead to slight heat build-up in the motor winding, particularly when the motor is not moving or is only moving very slowly. (Standstill, suspended loads, ...)

In the case of linear motors that only carry out very small movements, it must be ensured that a separate temperature sensor is available for each winding!

The values for the I2t control must be determined empirically, as appropriate, and adapted to the physical conditions, such as motor data, cooling and driving profiles. **Precise data for overload operation must always be obtained from the motor manufacturer.**

In the case of continuous operation of the motor at I2t = 100% the maximum motor temperature must not be exceeded.

3.10 Extern Enable

3.10.1 Configuration of the external enabler input

👼 SIO - motion	1			
▼ ✔ Config				▶ motion
Actual			E.	▶ Motor
Control	2 		Lunit	
	Enable	Ext En & Ord Ch 0		Ou#
		Ext_En & Cmd_Ch_0	<u> </u>	Quit
✓ Motor		0x000F		
F		0x000E		
Test	ShortCircuit if Error	0		
		✓ 1	_	
		✓ 1		
Burn Files	ExtDisErr_Ack	✓ 1		
	±00 kT_ExtEn	10.0	ms 🗧	
	======================================	0.0	ms	
scup	🕀 🛅 Encoder	Encoder		
Axis	🕀 🧰 FB_MotorField	PM Resolver		
A designation	FB_PositionCtrl	Resolver		
Assistant	🕀 🧰 InfoLink			
▶ Varlog	MeasureWheel	none	~	
▶ Debug	▶ Properties			
About INIX	💽 🛶 🗊 🗸 🖓 Axis SIO: Stop	SIO) 🔟 🔷 🇾	

Fig. 34: Extern Enable

- Ext + Ch_0 Controller becomes active when the external release is in place and is "active" and connected via target value channel 0
- Ext + Ch_1 Controller becomes active when the external release is in place and is "active" and connected via target value channel 1
- Ext + (Ch_0#Ch_1) Controller becomes active when the external release is in place and is "active" and connected via target value channel 0 or channel 1
- kT_ExtDis Safety function allowing for the motor to be slowed down in the case of loss of the external release. The external release is removed with a delay by time kT_ExtDis. During this time, this motor can still be slowed down by the user software. This means that the external release can be accepted into the emergency stop circuit.
- kT_ExtEn Software filter for the external release (10ms) to eliminate interference through spikes.

For STO (safe torque off) category 3 as per EN ISO 13849-1, the two safety inputs at X100 must be used. The external enabler is a non-secure input.

For configuration of the safety pulse inhibitor see section: 4 Safety configuration.

3.10.2 Configuration of the emergency stop braking ramp

Flags

These flags are used to define how the axis will be switched off if the control goes into error.

A braking resistor may need to be used for braking in the event of an emergency stop. When braking, the motor feeds the kinetic energy back into the intermediate circuit!

ShortCircuit_if_Error = 1

The controller switches the axis back on after the control has gone into error. The axis is braked with Imax until it comes to a full stop.

If the flag ShortCircuit_if_Error = 0 is (not set) when the external enabler is lost, braking is carried out with an emergency stop ramp. The emergency stop is set out in the axis configuration.

Dangerous_OvrOn

This bit must be zero.

ExtDis_as_Error

When the external enabler is switched off, an error occurs. This bit must be set for operation with STO! In the case of **GinLink**, the bit is **always** set and is no longer visible in the configuration

EmgStop_if_ExtDis

Emergency stop braking ramp is started after the external enabler is switched off. This bit must be set for operation with STO! In the case of **GinLink**, the bit is **always** set and is no longer visible in the configuration

ExtDisErr_Ack This bit must be set in order to prevent unwanted restart. This bit is not secure! In the case of **GinLink**, the bit is **always** set and is no longer visible in the configuration

Maximum braking power

The maximum permissible current for the short-circuit braking ramp is calculated as follows:

$$I_{MAX Drive} > 0.7 * (\frac{U_{CC}}{R_{PP}})$$

MAX Drive	Maximum permissible peak current of the drive A	
U _{cc}	Intermediate circuit voltage	V
R _{PP}	Phase-phase winding resistance	Ohm

The drive can be destroyed with the flag ShorCircuit_if_Error! The max. permissible short-circuit current is used for braking. The IGBTs/FETs can be destroyed after 1 ... 10 braking ramps.

This flag should only be used when the protection of the mechanics is more important than the protection of the drive!

This operating mode is excluded from the warranty!

3.10.3 Actual values for the external enabler

👼 SIO - motion	n.			
▶ Config			T	• motion
 Assistant 	,		62	
▶ Varlog				Debug
✓ ✓ Debug				r Debug
	item	valu	e unit	
✓ Explorer	🖻 🗁 Actual	OFF , ReStar	t 🦯	Explorer
	🕀 🛅 Controller	31.	0 °C	
	🗄 🗁 Errors	0x000008	3 Flags	
Memory	🗄 🔂 Warnings	0x000000	0 Flags	Quit
	🛱 🛅 Enable			
Events	TI Ext_En		1	
Events	J I Safety_0		0	
About INIX	Safety_1		0	
About INIA	GinLink_En		0 🔍	
	▶ Properties			
	E 💒 🗐 💁 🖌 🎐 Burn system, finished	SIO 💿	10 🔼 🛃	

Fig. 35: Actual values, external enabler

Ext_EN	Status of input +En, -En at pin X15
Safety_0, Safety_1	Status of input 24V_R1, 24V_R2 at pin X100
GinLink_EN	Status of software enabler of GinLink fieldbus

3.11 Feedback Motor Field

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str				
<u>Eile H</u> elp				
item	value	unit	^	
🗄 💼 FB_MotorField	PM Resolver			
FB_MotorField	PM Resolver			
- 0.0 FieldOffset	180.00	FldDeg		
🕒 📄 00 Flag	0x0000			
direction	0			
Field Synch With Ref Inp	0			
L 00 Flag	0x0000			
🕂 🕀 🗁 FB_PositionCtrl	Resolver			
🕂 🗁 InfoLink			¥	
Nmårkus NE i 192Nnto-sac-U UK				

Fig. 36: Motor Field Feedback

Feedback Motor Field PM Resolver	Feedback system is resolver on permanent magnet synchronous or DC motor		
AC I-model	Encoder on AC asynchronous motor		
PM SynCos	Sine cosine interface		
PM SynCos+Enc	Sine cosine interface with additional encoder to compensate for relative movements above this.		
PM Encoder	Incremental encoder		
Stepper without FB	No-feedback operation for stepper motors		
Flag.Direction	Flag = 0:CWFlag = 1:CCW, inverted counting directionThis flag can never be 1!!		

No field control is required for DC motors.

A feedback system that is rigidly connected to the motor shaft is required for the field feedback. A gauge after a long spindle with a small incline or a feedback system after a gearbox is not suitable for field control. In this case, a second feedback system directly on the motor shaft is required.

The error of the field offset must not be greater than +-10 ... 15°!

Calculation example with a 30cm-long steel spindle with 5mm incline:

a =	12um/	K/m	Coef	ficient of linear expansion of steel
dT =	10K		Temp	perature difference
I =	0.3m		Spine	dle length
pp =	5		Polpa	aare
5mm 5mm	≙	360 motor ° 1800 Feld °	≙	360 * 5 field °

Length change at dT=10K: 36um

36um ≙ 12.96 Feld °

 \rightarrow The 36um length change of the spindle at a temperature difference of 10K corresponds to a field angle of 13°. This means that the entire tolerance for the field offset is already given.

To this, you must add deviations in the auto-commutation measuring method: +- 5..10°, inaccuracy of the spindle (length): +- 5...10um, inaccuracy of the spindle (incline): +- 5...10um,

In the worst case scenario, the entire error thus amounts to over 30 field °. The axis can no longer be operated in an optimal manner with this deviation. Idle currents flow, the motor heats up and the dynamics reduce.

In the case of even greater errors, the axis may start to move itself!

3.12 Feedback position control

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str			×
<u>File</u> <u>H</u> elp			
item	value	unit	^
E 💼 FB_PositionCtrl	Resolver		
FB_PositionCtrl	Resolver		
🕂 🧰 InfoLink			
🕀 💼 MeasureWheel	none		×
NmárkúsNNET 192Nnto-sac-U j Uk			11.

Fig. 37: Position Control

Feedback for the position controller in the servo drive:

Resolver

SinCos

Encoder

Stepper without FB

3.13 GinLink

😼 Explorer					
	▶ Explorer				
item	value	unit			
🖻 🛅 GinLink			^	A 11	
±00 LinkSamplingRate	0.062500	ms		Quit	
±00 Vcmd_100%	800.000	T/min			
±00 Icmd_100%	0.000	Arms			
🛅 Cmd_Ch_0	Speed 32Bit			Licht Tür	
🛅 Cmd_Ch_1	MasPosErr 32Bit				
🛅 Cmd_Ch_2	+ Iq 32Bit			Links Franks	
🛅 FB_Ch_0	SinCos*1024 32Bit			Licht Fenster	
🛅 FB_Ch_1	Resolver*65536 32Bit				
	none 🗸			Rolladen Up	
Absolute_Encoder	none				
🕀 💼 Encoder	Resolver*65536 32Bit		~		
▶ Properties	SinCos*1024 32Bit		-	Rolladen Down	
	Stepper without FB 32Bit				
	Iq 32Bit	9 💵 🚨 😏		-	

Fig. 38: GinLink

Vcmd_100%	Nominal speed of rotation of the control. Standardisation factor			
LinkSamplingRate	Sampling rate of fieldbus master, between two tai controller, typica 8 to 32kHz. The 16 kHz 8 kHz 4 kHz 2 kHz 1 kHz 0.5kHz 0.25 kHz	of the superordinate controller or path control in the This value is required in order to match the interpolation rget values of the master to the sampling rate of the SAC ally: a following sampling rates are provided via the fieldbus: 0.0625 ms 0.125 ms 0.25 0.5 1 2 ms 4 ms		
lcmd_100%	Nominal current	t for current control. Standardisation factor		
<i>Target value channels</i> There are a total of thre	e target value cł	nannels: Cmd_Ch_0, Cmd_Ch_1, Cmd_Ch_2		
Speed 32Bit	Target value is speed (for position control, the v is integrated into the controller)			
lq Limit 32Bit lq 32Bit + lq 32Bit MasPosErr 32Bit	Limit of constant target current Curve form for target current Curve form for current lead value Following error from superordinate position control			

Actual value channels

There are a total of three actual value channels: FB_Ch_0: Standard assignment for motor feedback, position detection on the SAM FB_Ch_1: FB_Ch_2: Standard assignment for active current Iq

23-bit values are transmitted on all channels.

Resolver*65536 32Bit	Resolver with 65536 increments per motor revolution as 32-bit wide value
Encoder 32Bit	Encoder as 12-bit wide value
SinCos*1024 32Bit	Number of SinCos periods per motor revolution * 1024 as 32-bit wide value
Stepper without FB	Calculated feedback for no-feedback operation of stepper motors. 4096 increments are returned per motor revolution.
lq	Actual current value

Actual current value

In the case of analogue feedback systems, the resolution of the feedback system is given along with the selection (resolver*65536 32 bit):

- Resolver: The resolution is 16 bit; 65'536 increments are generated per resolver revolution.
- SinCos: The resolution is 10 bit; number of SinCos periods per revolution * 1024 gives the number of increments that are transmitted per revolution.

The following parameters must matc	h the configuration in IMD:
Link Sampling Rate	LinkSamplingRate
Increments per motor revolution	IncsPerTurn
Nominal speed of rotation	TrunsPerMin
See dt2 files	

3.14 Motor

3.14.1 Motor configuration

E II	🖥 Inco Explorer - C:\indel\bin\IncoExp.str					\mathbf{X}	
<u>F</u> ile	<u>File H</u> elp						
item					value	unit	
				🗄 🚞 Motor	3Phase PM synchron		
				- ? Motor	3Phase PM synchron		
				🖃 🚞 Temp_Sensor	Ain0_KTY84_100		
				- ? Temp_Sensor	Ain0_KTY84_100		
				-0.0 Temp_Wam	300.0	°C	
				-0.0 Temp_End	300.0	°C	
				🖃 00 Flag	0x0040		
				- 00 Flag	0x0040		
				- J direction	0		
				- л dlq_dt_cor	0		
				- JI No_RsKe_Temp	1		
				- л No_Ke_adaption	0		
				L_ ⊓⊥ No_TempSwitch	0		
				-0.0 PolePair	5	ppz	
				-0.0 Speed_Max	4000.000	T/min	
				-0.0 I_nom	3.500	Arms	
				-0.0 I_max	19.000	Arms	
				-0.0 I_max_red	1.000	Arms	
				-0.0 Kt	0.000	Nm/A	
				-0.0 Rs	1.900	Ohm pp	
				-0.0 Ls	3.200	mH pp	
				└-0.0 Ke	42.000	Vms	~
۱\ma							

Fig. 39: Motor

Use values from the motor data sheet. The values may need to be verified by means of measurement. Please observe the standardisation of the values: Ls, Rs are given as either phase-phase or as strand resistance or inductance. The Ke is also often given differently.

If it is unclear whether the Rs, Ls, Ke values are correct, they can be measured as per section 10.21 .

Motor-Flags

Flag	direction	Direction of rotation of the motor field
	dlq_dt_cor	Lead value for current calculated from inductance of the motor The current required for the coming PWM pulse is already included in the calculation. However, if the phase reserve brings more than approx. 200Hz, this can cause additional noise.
	No_Ke_Adaption	No automatic correction of Ke during a journey with a high speed of rotation. As standard, bit = 1
	No_RsKe_TempComp	No temperature compensation of R and Ke These three flags are set if a temperature sensor that shows a measurement value in °C is not being used. As standard, bit = 1

Physical motor parameters

Motor	 3-phase AC asynchronous motor 3-phase PM synchronous motor, rotational or linear (permanent magnet motor) 2-phase stepper motor: stepper motor with or without feedback DC motor with feedback DC motor without feedback
I _{MAX} [A _{RMS}]	Maximum current of the motor; this current is limited by the servo drive.
I _{NOM} [A _{RMS}]	Nominal current of the motor
I _{red} : [A _{rms}]	Current value for the operating mode of current reduction. In this mode, the controller limits the maximum current to I_{RED} . The operating mode is set by the fieldbus master.
Ke [V]	Voltage constant of the motor (counter-EMF) [Vrms/1000rpm]
Ls [mH]	Inductance of the motor winding (phase-phase)
PolePair	Number of pole pairs in the motor. (Number of pole pairs = number of poles $/ 2$)
Rs [Ω]	Ohmic resistance of the motor winding (phase-phase)
Speed_Max [U/	min] Maximum permissible mechanical speed of rotation of the motor

Should there be any uncertainty, Rs and Ls should be measured. **Warning**: Look out for measuring errors in the measuring tools used!

Temperature sensors

When configuring, you must pay attention to the encoder pin to which the temperature sensor is connected: input Ain0 is assigned to the resolver and input Ain1 to the SinCos encoder.

The characteristic line of the KTY sensors is linearised:

Figure 3.1: Linearisation of KTY-110

Temp_SensorAin0_KTY84_100
Ain0_KTY84_110
Ain1_KTY84_100
Ain1_KTY84_100
Ain1_KTY84_100
Ain1_KTY84_110
Ain0_PTC
Ain0_PTC
Ain1_PTC
Ain0_10kGT2
Ain1_10kGT2KTY-100 to analogue input 0 resolver pin
KTY-100 to analogue input 1 SinCos pin
PTC to analogue input 0 resolver pin

KTY-84-130 sensors can also be connected. To do this, configure a KTY-84-100 sensor and wire a 27 kOhm resistor parallel to the sensor.

- Temp_Warm At this temperature (100°C) the servo controller emits the warning Motor Temp warm.
- Temp_End At this temperature (120°C) the servo controller emits the error message Motor Temp max.

3.14.2 Converting Ke for linear motors

$$K_{e \ Rotativ} = \frac{K_{e \ Translativ} * Magnetabstand * 1000}{60}$$

$$K_{e \ translational} \qquad V/m/s$$

$$K_{e \ rotational} \qquad v/1000U/min$$
Magnet spacing m

3.14.3 Converting Ke for Maxon motors

$$K_{e \ Rotativ} = \frac{1000}{K_{e \ Maxon}}$$

Ke rotational	v/1000U/min
K _{e Maxon}	min-1 V-1

3.15 PWM settings

🖻 🛅 PWM	12.000	kHz (> Reset)
-±00 PWM	12.000	kHz (> Reset)
 — 00 PWMfreq_multiplier 	x1	*
-±00 DeadTime	909	ns
00 DeadTime_correction	none	

Figure 3.2: PWM settings

PWM	Sampling and PWM frequency of the controller: 8kHz, 12kHz, 16kHz, 32kHz
	Warning: A high frequency also means a higher power dissipation and therefore higher heat build-up at the output stage. Indel does not provide any guarantee in the case of defects due to incorrect configurations.
	After changing the PWM frequency you need to reset the drive's hardware so that the changes are accepted!
PWMfreq_multiplier	<i>x1, x2, x3, x4</i> Motors with minimal inductance that are run on MAX boards with low sampling rates (8kHz); the PWM can be increased in order to improve the current behaviour.
	The higher PWM frequency allows a more even current flow to be achieved in the windings.
	However, higher switching losses also generate more power dissipation and waste heat.
	It is only the PWM frequency that is changed; the position loop remains the same.
	x0.5 The setting x0.5 is designed for large SAC3, SAC3x3 drives (INENN: 24A) . With PWM x 0.5 the drive controls with, for example, 16kHz; the PWM, however, only runs at 8kHz. The output values are changed in each edge. This means that the controllers become considerably less hot.
DeadTime	Dead time of the IGBTs. This parameter is controller-dependent.
DeadTime_correction	<i>none</i> In the case of linear motors with a high current amplification (kPq, kPd), the dead time compensation must be switched off (none). This allows disruptive noises to be eliminated.
	<i>U_half, U_full, U_double</i> For drives with large motors or large currents, the controller behaviour when at a standstill can be improved if the dead time compensation is switched on.

3.16 Position controller

Indel servo controllers are equipped with a modifiable PID controller, comprising three different parameter sets. Modifiability means pilot control, or what is known as a booster. This means that speed and acceleration-dependent lead values can be added to the target value.

The lead values are purely target values and do not affect the control algorithm, i.e. the stability of the control route is not affected.

The three different PID parameter sets can be used simultaneously and completely independently from one another. As standard, the three parameter sets are provided for forwards, backwards and stand-by.

Driving forwards and backwards

This allows a load change, for example, to be reacted to in a targeted manner in handling tasks.

Stand-by

After a configurable period of time, the control is switched to stand-by. In stand-by mode, the motor can be operated in a power-saving mode, for example.

PID-Parameter

Altered motor parameters are only updated in the RAM of the controller. In order to maintain them long-term, they must be burned to the flash prom using Burn Values to Target. If the parameters are not saved or burned, they will be lost forever after switch-off!

PID values also can only be updated when the controller is active.

3.16.1 Configuration of the position controller

🐨 Inco Explorer - C:\indel\bin\IncoExp	.str		×
<u>File H</u> elp			
item	value	unit	^
🕒 💼 PositionCtrl	PID Position + MasPosErr		
- ? PositionCtrl	PID Position + MasPosErr		
📄 🗇 🕞 🗇 Flag	0x0000		
- 00 Flag	0x0000		
Land Land Land Land Land	0		
- 0.0 Hold To Standby Time	0.500	s	
- 0.0 I_Hold	0.000	Arms	
-0.0 Pos_Err_Max	256.000	Inc	
-0.0 Pos_Int_Max	7680.000	Inc	
🛨 🧰 standby			
🖃 🧰 forward			
-0.0 kP	0.050	* (
-0.0 kl	50.000	ms (
-0.0 kD	12.500	ms (
- 0.0 kd	0.000	ms	
-0.0 phvSpeed	0.000	A@spd	
└0.0 phvAcc	0.000	A@acc	
🕂 🧰 backward			~
NmárkúsNie É 1917X J UK			1.

Fig. 41: Position controller

PositionCtrl	Motors with feedback PID speed PID position PID position+MasPosErr	Speed controller Position controller with MasPos Error correction Position controller with MasPos Error correction (MasPos Error is always included in the control.)
	Motors without feedback	
	3-phase stepper without FB	Position controller for 3-phase PM motors without feedback
	2-phase stepper without FB	Position controller for 2-phase PM motors without feedback
	DC motor without FB	Position controller for DC motors without feedback
HoldToStand-b	y [s] At the end of a ramp jou the configurable time "HoldToSt Standby-Mode. There is a sepa This function allows the drive to power-saving mode during a do	urney, the controller switches to "Hold Mode". After tandby", the controller changes from hold mode to trate PID parameter set for stand-by mode. to be operated in owntime.
I_Hold	Lead value: For "suspended loa using "I_Hold".	ads", a constant value or constant force can be set
Pos_Err_Max	Limitation of the maximum follo	wing error. Typically: 256 MotInc
Pos_Int_Max	Limitation of the I component of MotInc	the PID control (position controller) Typically: 7680

Flag Acc_Filter Acceleration filter

asym_acc Asymmetrical acceleration lead value 1: Acceleration lead value in forward applies to acceleration 1: Acceleration lead value in backward applies to braking 0: Acceleration lead value in forward applies to pos. direction 0: Acceleration lead value in backward applies to neg. direction

There are 3 PID parameter sets available for forward, backward and stand-by:

Value		Standardisation	Description
kP	*	A/Inc control deviati- on	Proportional value Position error
kI	ms		Integral component Integrator position error
kD	ms		Differential component Speed error
kd	ms		Acceleration error
phvSpeed	*	A/v	Lead value for speed
phvAcc	ms		Lead value for acceleration

A: Ampere Inc: Increment v: Speed

The parameter kd can only be used with high-resolution encoder systems.

Switching of the PID parameters

In the case of a following error of more than 10 MotInc, the parameter set is switched from stand-by to forward or backward.

$$10 MotInc = \frac{1 Turn}{N_{inc}} = \frac{360^{\circ}}{4096} = 0.879^{\circ}$$
 Also see section 2.2.

Warning

If the PID values used for stand-by are different to those used for forward or backward, it may be that the axis "jerks" every so often, in order to compensate for cumulative path errors. This will particularly happen if the kP is considerably smaller in stand-by than for forward/backward.

3.17 Power Supply

Inco Explorer - C:\indel\bin\IncoExp	.str		×
<u>File H</u> elp			
item	value	unit	^
📄 💼 Power			
-0.0 Ucc_Min	10.0	Vdc	
-0.0 Ucc_OK	260.0	Vdc	
-0.0 Ucc_End	400.0	Vdc	
🖃 🧰 Supply	3-Phase		
- ? Supply	3-Phase		-
🛨 00 Flag	0x0001		
-0.0 Ucc_Relais_ON	270.0	Vdc	
-0.0 Ucc_Relais_OFF	20.0	Vdc	
-0.0 Ballast_0%	360.0	Vdc	
-0.0 Ballast_100%	380.0	Vdc	¥
j \\márkús\NETT9T\X_JUK			1.

Fig. 42: Power Supply

Supply	1-phase or 3-phase supply, in MAX and AX boards Brake only		
Ucc_End	If the intermediate circuit voltage exceeds this value, the control goes into error.		
Ucc_Min	Below this limit value, the control goes into error. Between Ucc_Ok and Ucc_Min the control emits a warning: "Ucc low"		
Ucc_OK	Normal operation is between Ucc_End and Ucc_OK.		
Ballast_0%	With this intermediate circuit voltage, the PWM of the ballast IGBT is 0%		
Ballast_100%	With this intermediate circuit voltage, the PWM of the ballast IGBT is 100%		
Ucc_Relais_ON	When the controller is switched on, the intermediate circuit capacitors are loaded via a resistor. As soon as the intermediate circuit voltage exceeds the threshold, the loading resistors are bypassed.		
Ucc_Relais_OF	F Threshold for switching off the relays in the case of interrupted supply voltage		
Flags	No_PhaseFailure Phase error evaluation is deactivated This flag must be one in the case of 1-phase supply and in the case of DC supply via the intermediate circuit.		

Recommended values for the configuration of the voltage supply

In order to protect the intermediate circuit capacitors from premature aging, the value must not drop below Ucc Min.

Supply		3-phase 400V	1-phase 230V	1-phase 120V	48V DC	24V DC
UCC_End	V	800	400	220	56	30
UCC_Min	V	450	260	125	40	20
UCC_Ok	V	500	280	135	44	22
Ballast_0%	V	760	360	180	50	25
Ballast_100%	V	780	380	200	52	28
UCC_Relais_ON	V	480	270	110	(42)	(22)
UCC_Relais_OFF	V	470	260	100	(40)	(20)

The values for Ucc_Relais_ON/OFF in MAX and AX boards are irrelevant as there is no load switching on these boards.

3.18 Speed Filter

Inco path for the speed filters: Ctrl.MotorConfig.SpeedFilter

Also see section: 11.4 Procedure for optimising the control route.

3.18.1 Average Speed-Filter

E ⊕	Inco Explorer - C:\indel\bin\lncoExp.str			×
<u>F</u> ile	Help			
item		value	unit	^
	🖃 🚞 SpeedFilter	Average	•	_
	- ? SpeedFilter	Average		
	0.0 kT_Speed		1.0 ms	¥
NmárkúsNNE É 19Í VX. J. UK				11.

Fig. 43: Average Filter

3.18.2 Speed Observer

🐨 Inco Explorer - C:\indel\bin\IncoExp.str			×
<u>F</u> ile <u>H</u> elp			
item	value	unit	^
🖃 🚞 SpeedFilter	Observer		
- ? SpeedFilter	Observer		-
-0.0 F_g	400.000	Hz	
0.0 kP_lq	0.030000		~
NmarkusNET191X UK			

Fig. 44: Observer

3.19 Actual hardware values

Some actual values, e.g. the A-B tracks of the incremental encoder, can be viewed directly in the hardware.

Inco path for actual hardware values: Hardware

In the case of older firmware versions:

Inco path for actual hardware values: Ctr0.Hardware.Status

国	- Explorer		
item		value	unit
÷(NET 191		^
	□		
	🕀 🧰 Ax		
	🕀 🧰 Axis		
	🕀 🧰 Control		
	🕀 🧰 Ctrl		
	🕀 🧰 DatabaseTables		
	🕀 🛅 Devices		
	🕀 🫅 EvtLog		
	🕀 🫅 FieldBus		
	🛱 🫅 Hardware		
	⊞… 00 Status	0xF880BFE0	
	⊞ 00 ResFlg	0x00008002	DANGEROUS
		0x00800000	DANGEROUS
	E C Axis-0		
	00 Encoder	0x0FFF	
		0	
		0	
		0	
	00 EncAtEncRef	0x0000	#:val
	00 TimAtEncRef	0x0000	Ticks
	···· 00 SiCo_Cnt	0x5FF3	
	SiCo_Inp_Z	0	
	SiCo_Inp_A	0	
	SiCo_Inp_B	0	
	···· 00 SiCoAtSiCoRef	0x5FF3	#:val
	00 TimAtSiCoRef	0x8AF9	Ticks
	···· 00 ADC_Sin	0xFFFF	
	00 ADC_Cos	0xFFEF	
	PWM_Enable_uw	0	
	PWM_Enable_V	0.0050	Tala
		0x08F3	Ticks
		0x08F3	Ticks
		0x08F3	HCKS
	00 IU	0x04A4	
	00 IV	0x04A4	
	00 Iu_renod	0x09/4	
b Dears	ention	0x095D	
Prope	sta sta sta sta		
	🚗 🐟 📥 빌		· 🔍 💹 🔼

Fig. 45: Actual hardware values

3.20 Porting Info-link motor configuration files on GinLink

In order to port older motor configuration files to the latest standard, the missing parameters can be stored in a separate file. This partial configuration file can then be loaded into the drive.

It is recommended that you do not save any axis-specific parameters, such as GinLink configuration, etc., in the partial configuration files.

Example for 3x400V drive

Ctrl.MotorConfig.Version	3.199997
Ctrl.MotorConfig.PWM.DeadTime	909.088135
Ctrl.MotorConfig.PWM.DeadTime_correction	0.000000
Ctrl.MotorConfig.PWM.PWMfreq_multiplier	1.000000
Ctrl.MotorConfig.Power.Ucc_End	800.00000
Ctrl.MotorConfig.Power.Ucc_Min	0.000000
Ctrl.MotorConfig.Power.Ucc_OK	490.000000
Ctrl.MotorConfig.Power.Supply.Ballast_0%	700.000000
Ctrl.MotorConfig.Power.Supply.Ballast_100%	760.000000
Ctrl.MotorConfig.Power.Supply.Supply	2.000000
Ctrl.MotorConfig.Power.Supply.Ucc_Relais_OFF	470.000000
Ctrl.MotorConfig.Power.Supply.Ucc_Relais_ON	480.000000
Ctrl.MotorConfig.Power.Supply.Flag.Flag	0.000000
Ctrl.MotorConfig.Power.Supply.Flag.No_PhaseFailure	0.00000

4 Safety configuration

4.1 Operation with Safe Torque Off (STO)

Prerequisites

- The two safety relays must be controlled by the control using digital 24V outputs. (Test controller release)
- The main contactor must be controlled by the control using a 24V output.

Configuration of the external enabler in the servo drive See section: 3.10 Extern Enable

Protecting the drive against overload

Important: for protection of the drive also see section:3.9.3l2t control,10.1Protecting the motor against overload

Configuration of the ballast resistance in the servo drive

Configure the ballast resistance in accordance with section 3.17 Power Supply

Configuration in the IMD configuration

The following parameters must be correctly set in the dt2 configuration:

X.Axis.dt2	
Emergency Type	 When the external enabler in the drive is switched off, the emergency stop braking ramp is activated: 0: simple stop without emergency stop braking ramp 1: stop with emergency stop braking ramp; controller is deactivated 2: controller is deactivated
Emergency Delay	Delay between Stop and Inactivate with emergency stop braking ramp in ms
X.PosCtrl.dt2	
emgB	Retardation of the emergency stop braking ramp; this delay must be adapted to suit the mechanical conditions.

Monitoring the auxiliary contacts

The auxiliary contacts of the two safety relays (N/O switches) are displayed in INCO-Tree. The part of the application that switches the safety relays on must check the condition of the two auxiliary contacts. The comparison of their condition must not last longer than 50ms.

In the event of a fault, an emergency stop must be triggered.

Testing controller release

The controller release must be tested cyclically. To do this, both safety relays and the external enabler are switched off and an attempt is made to activate the control and move the axis.

This procedure involves the following steps:

External enabler	Relay 1	Relay 2	
off	off	off	
off	on	on	
on	on	off	
on	off	on	
on	on	on	

If the testing of the controller release is unsuccessful, the drive must not be put into operation!

4.2 Engaging Safe Torque Off

Wiring examples

You can find several wiring examples in this manual: Indel-Safety-Manual.pdf (see section on connection examples).

Configuration, wiring

Example for an axis that can brake to 0 from the maximum speed in 200ms:

- Wire safety door to SAC external enabler
- Wire safety door (two-channel) to SAC-STO via safety time relay (e.g. 300ms)
- MotorConfig.Enable.kT_ExtDis programme to, for example, 250ms
- in the IMD project, configure the SAC external enabler as an emergency input
- in the IMD project, select the emergency braking ramp in such a way that the unit can be stopped from the maximum speed in, for example, 200ms

Procedure in the SAC and fieldbus master

- Safety door opens, external enabler on the SAC drive is lost
- In the SAC, the disable timer starts, the axis remains active in position operation and continues its control
- In the master (SAM or PCI card), the emergency braking ramp is introduced automatically
- depending on the speed, Speed=0 is reached within 200ms at the latest the master deactivates the axis (red active LED goes out; if the active status is configured to a digital output, this output is lost)
- the SAC axis switches off after 250ms, regardless of whether Speed=0 has already been achieved
- after 300ms, the safety time relay switches off the hardware output stages via the STO Safety Torque Off.

From this point onwards, the safety pulse inhibitor is active and the drive is no longer able to control the motor.

Checking the braking ramp

The entire procedure and the selected emergency braking lamp must be tested and checked using log files:

- all signals must appear as intended: Ctrl.Actual.Enable.Ext_En Ctrl.Actual.Enable.Safety_0 Ctrl.Actual.Enable.Safety_1 Ctrl.Actual.Enable.GinLink_En Ctrl.Actual.GinLink.FB_Status.Axis_Active Ctrl.Actual.PositionCtrl.cmd_V Ctrl.Actual.PositionCtrl.act_V Ctrl.Actual.PositionCtrl.cmd_A Ctrl.Actual.PositionCtrl.act_A
- the drive must not switch off prematurely and spin out due to overcurrent
- engage the STO at the highest speed to ensure that the speed can be reduced to zero within the set time

Notes

The external enabler does not need to be connected to a digital input again; this is clear in the process diagram under the corresponding position channel.

If needed, the external enabler can also be connected via digital outputs on the control. This is not compulsory.

With all Indel drives and motion boards, there is always only 1 external enabler and 1 STO input available, and it always has an impact on all axes at the same time.

Fig. 46: Example: STO, locked safety door

The examples are non-binding. The user is responsible for the binding layout of the safety functions (SF). The user must observe the state of the art in the corresponding European standards, such as EN ISO 13849-1/-2, EN 62061, EN 1088, etc.

5 **IMD** configuration

5.1 GinLink configuration in IMD

Description of GinLink configuration in IMD with the GinLink.dt2 file. The configured cycle time on the GinLink of each axis must match the configured cycle time in the motor configuration file under Ctrl.MotorConfig.GinLink.LinkSamplingRate.

Fig. 47: GinLink configuration

Index of all GinLink cycle times 1)

The following cycle times are possible via the GinLink as standard:

Cycle time	Cycle rate	Index	
• 1ms	1kHz	3	
 0.25ms 	4kHz	2	
 0.125 	8kHz	1	
 0.0625 	16kHz	0	

Cycle times of the different GinLink pages 2)

The entire periphery, incl. communication, is distributed across different data pages. Each of these pages can be transmitted via the GinLink with a configurable cycle time. The following pages are available:

- Page[0]Page[1]
- Digital inputs and outputs
- Analogue inputs and outputs
- Page[2]Page[3]
- Page[4]

Assignment of servo drive to MAC number 3)

Axes

Each GinLink participant has a universal MAC number. In the configuration, the assignment must be given between the name of the GinLink participant and its MAC number.

When exchanging a GinLink participant in the field, the MAC number must be adapted!

Index of axes for drives with several output stages 4) 5)

Drives with several output stages, such as AX4, MAX2/4 or SAC3x3, require this index for the assignment of the names of the axes.

5.2 Axis configuration in IMD

5.2.1 Motor.dt2

This file contains information on the motor or axis and is required by SAM for the conversion of motor increments into the position.

TurnsPerMin	Standardisation factor for the speed on the GinLink. Must match Ctrl.Motorconfig.GinLink.Vcmd_100%
IncsPerTurn	Number of increments on the feedback configured in FB_Ch_0 channel. Must match the axis-specific number of increments per motor revolution from the motor configuration file.
FeedPerTurn	Number of configured "units" per motor revolution
GearRatio	Gear used. If there is no gear available, then transmission 1.0

5.2.2 PosCtrl.dt2

The Variable DeadTime must be correctly set in the PosCtrl.dt2 file. This dead time [ms] is required by Sam and must be set to the current sampling frequency of the corresponding axis.

Example:

Control frequency at 16kHz:

 $DeatTime = 2 \frac{1}{Regelfrequenz} = 2 \frac{1}{16 \, kHz} = 0.125 \, ms$

6 **Controller configuration**

In the folder Ctrl.CtrlConfig, you can change all parameters rated to the controller.

- Adjustment data for current measurement
- Measuring ranges for current, voltage, temperature
- Maximum IGBT current
- Resolver adjustment

All adjustments are carried out in-factory by INDEL AG. Values must never be changed without consulting Indel. If the controller parameters are overwritten (burn controller parameter file *.chf to flash PROM), adjustment data will be irrevocably lost and the controller must be sent in for repair.

In order to be able to load the controller configuration into the drive, you need an entry in the Windows Registry. This entry can be requested from Indel.

This is necessary in order to adjust the sampling frequency of the position controller in the drive.

7 Error message from the servo drive

7.1 Error messages

Stop	0x0000'0001
Ucc below Ucc min	0x0000'0002
Ucc larger than Ucc max	0x0000'0004
I2t exceeded > 120%	0x0000'0008
Output stage overheated (80°C)	0x0000'0010
Motor temp exceeded	0x0000'0020
Motor short-circuit	0x0000'0040
Resolver SinCos error	0x0000'0080
Maximum rotational speed exceeded	0x0000'0100
Safety relay not switched on	0x0000'0200
Auto-commutation error	0x0000'0400
Power end stop reached	0x0000'0800
Phase error	0x0000'1000
PWM Watchdog: Interrupt overrun	0x0000'2000
missing Exteral Enable	0x0000'4000
missing (motor) configuration	0x0000'8000
Fieldbus watchdog	0x0001'0000

7.2 Warnings

Ucc below Ucc ok Ucc is set up and OK Warning Iq reached	0x0000'0001 0x0000'0002 0x0000'0004	1)
Warning output stage hot (75°C) Warning I2t exceeded Motor temp exceeded 100% modulation exceeded	0x0000'0010 0x0000'0020 0x0000'0040 0x0000'0080	
Warning unloading time exceeded	0x0000'0100	

1) This warning appears when the safety relay is not switched on and the pulse inhibitor is activated.

Further details on the error messages can be found in the handbook Hardware-Manual-SAC3.pdf.

8 Indel position controller

8.1 Move commands

🗟 Inco Explorer - C:\IMD\Bin\IncoExp.str				
Eile Help				
item	value		unit	^
🕒 🧰 Cmd				
f(X) Activate(1:1, 0:1, 0:1, 0:1)		call		
f(X) InActivate()		call		
f(X) AcceptError()		call		
f(x) AcceptWarning()		call		
f(X) Move(0.000:d)		call		
f(X) MoveEx(0.000:d, 0.000:d, 0x000		call		
f(X) Endless(1:1)		call		
+ f(X) Sync(0.000:d)	call			
f(X) Track("", 1.000000:d, 10:l)		call		
f(X) Cursor()	call			
+ f(X) Update()		call		
		call		
+ f(x) EmergencyStop()		call		
t(x) Break()		call		
+ f(X) Continue()		call		
+ f(x) GetMoveTime(0.000:d)		call		
+ f(x) GetMoveTicks(0.000:d)		call		
f(X) GetMoveDist(0.000:d, 0.000000:d)		call		
f(X) EnableCurLimit()	call			
f(X) DisableCurLimit()	call			
f(X) EnableCoupling()		call		
t f(X) DisableCoupling()		call		
🛨 💼 Test				~
vmárkusvne ří 192 ji Uk				

Fig. 48: Move commands

Activate()	Activation of the axis CheckPos:	te axis The maximum permissible following error is considered if "maxSerr" is exceeded, the control goes into "following error"	
	SimulatePos:	The actual value that comes from the servo controller is simulated; there is no "errS".	
	SimulateOut:	The target value is simulated; the "errS" is calculated but not evaluated.	
	SimulateAct:	No target value is sent to the servo controller. The ramp is only calculated on the software side.	
	Activate(0,0,1,0)	corresponds to "Simulation Mode" in the old system	
InActivate()	Deactivation of the axis		
Move()	Move to positions in °, m, mm		
Endless()	Rotate endlessly in a positive or negative direction. The curve profile is configured under "Ramp/Cmd"		
Break()	Interrupts the current move command		
Continue()	Continues the last move command		

Synch()	Synch journey		
	Position:	The synch mark (zero pulse) is expected within this position. If the zero pulse is not found, the control goes into error:	
	SynchPosition:	Synchronisation position, i.e. after the synchronisation, the actual position of the synch point is set to "SynchPosition".	
	StopAtSynch:	When crossing the synch position, the unit is either stopped or travels to the end of the ramp.	
EmergencyStor			
EmergencyStop	NotStop		
	Stop:	The axis stops with the set maximum braking ramp: Axis.PhysicalAxis0.Ramp.Cmd.emgB = 360'000 °/s2	
	Inactive:	The axis is switched to inactive	
	Stop/Inactive:	The axis stops with the set maximum braking ramp: Axis.PhysicalAxis0.Ramp.Cmd.emgB = $360'000 \circ/s2$ The axis is switched to inactive after the delay time	
	Delay:	Time in ms	
AcceptError()	Acknowledgem This function is You can acknow An axis can onl	ent of errors intended for implementation of error handling. wledge individual or all errors using this function. y be activated if all errors have previously been acknowledged.	

AcceptWarning()

Acknowledgement of warnings

8.2 Error messages from the position controller in the fieldbus master

Following error	Axis.PhysicalAxis0.Error Axis.PhysicalAxis0.Control.Error Axis.PhysicalAxis0.Ramp.Error	= 0x0000'4000 = 0x0000'0001 = 0x0000'0000	"Control Error Pending"
Synch error	Axis.PhysicalAxis0.Error Axis.PhysicalAxis0.Control.Error Axis.PhysicalAxis0.Ramp.Error	= 0x0000'0002 = 0x0000'0000 = 0x0000'0000	"Synch Error"
Controller error:	: Ucc < Uccmin		
	Axis.PhysicalAxis0.Error Axis.PhysicalAxis0.Control.Error	= 0x0000'4000 = 0x0000'4000 = 0x0000'0000	"Control Error Pending" "External Controller Error
	\\\PhysicalAxis0\Ctrl.Actual.Errors	= 0x000000000 = 0x01010001	"Warn: Ucc < Ucc_OK" "Warning: Power-OFF DisCharge failure"
	\\\PhysicalAxis0\Ctrl.Actual.Errors	= 0x0000'0003	"Ucc < Ucc_Min"

8.2.1 Moving axes

"Delete error, start axis" routine

- InActive() Deactivate position controller and servo controller
- AcceptError() Acknowledge error
- Active() Activate position controller and servo controller
- Sleep(3000) At the first switch-on with a SinCos encoder, auto-commutation is carried out during this time. After successful auto-commutation, the controller becomes active (also see configuration). The sleep time is dependent on the configuration of the auto-commutation!
- Error handling

"Synch journey" routine

- "Delete error, start axis" routine
- Is the axis at zero? If yes, move away
- Sync(Pos, SyncPos, StopAtSync)
- Error handling

Routine "Move"

- Move (pos, synchronous/asynchronous)
- Error handling

9 Trapezoid controller

AC5_Show: 3.17 System-Version: 05.23									
Mo	f torConfig Ctr	rlConfig	Logger	Test	De	bug	NET191\HCS-0		•
	NET191\HCS-0					•	ErrCnt: 2	INDE	LAG
				Toggle Cycle	500	ms	Actual Values		
	VRG_TST	&H80	-	VRG_BEF	&H00	-	SAC 1	0A Motor	
WM	VRG_FLG	&H00	-	ERR_FLG	&H01	clear		49	Vde
ent / F	VRG_S	360	deg	VRG_SYN	0	deg	Temp	32.4	oC Jo
Curr		22,400	- In - In	KDC CD			MotorTemp	194.0	oC
ΠΞ	VRG_V	23400	deg/s	KRG_SR	1		Speed	0.0	11/min
	VHG_A	36000	deg/s	KRG_SH	1		Position	0.0	lne
	VRG_B	36000	deg/s^				Position		lus
	VRG_SCU	0	%	KMX_SE	100	Inc	wheel_Position	U	Inc
		Set Zero					I_torque	0.000	Arms
l e	ANZ_S	-130.43	deg	ANZ_DAC	0.000	V	12t	0	%
out	ANZ_SER	0	Inc	AXS_STA	&H00		Fan	0	%
qC	TrapeziodContr	oller Adjustn	nents Me	mory			-		
ezoi	Save 1	Save	2	Save 3	Save 4		Pow	er ON	
[[ab	Load 1	Load	2	Load 3	Load 4		Errors	&H000100A1	Flags
115	AxisMovingFile (*.AMF)								
115	2 AXIS.AMF Search								
iste	l l l l l l l l l l l l l l l l l l l								
W	1 Repeat AMF-File Single Step Start Axis-Moving								
	Link 31.01.2003 13:49 //								

Fig. 49: ACS-Show

9.1.1 ACS-Show

With ACS-Show, all Indel axis cards: servo controller, stepper motor indexer and output stage, DC motor output stage, etc. can be put into operation.

9.1.2 Specifications for trapezoid and S profile

These values can still be changed during operation.

vrg_s	route to be travelled.	[degrees, m, mm]
vrg_v	speed to be travelled at	[degrees, m, mm/sec]
vrg_a	Beschleunigung	[Grad, m, mm/sec ²]
vrg_b	delay	[degrees, m, mm/sec ²]
vrg_scu	S curve proportion in %	[%]

vrg_syn synchronisation position, e.g. after synchronisation, the actual position of the synch point is set to vrg_syn.

9.1.3 Control constants

The control weights can be given separately for S (route) and V (speed) as well as for RUN (axis running) and HALT (axis at standstill). The value 1.0 means that 1 INC error causes 1 DAC bit correction. These values can only be definitively set during commissioning.

krg_vr	Control weight for the speed when the axis is running. If Indel servo controllers are being used, this value must be set to zero!
krg_vh	Control weight for the speed when the axis is at a standstill. If Indel servo controllers are being used, this value must be set to zero!
krg_sr	Control weight for the route when the axis is running. Typically krg_sr = 1 for the servo controller.
krg_sh	Control weight for the route when the axis is at a standstill. Typically krg_sh = 1 or 2 for the servo controller.
kmx_se	This is the maximum permissible path error in INC (difference between actual and target position). If this value is exceeded during travel, the controller will automatically go into emergency stop.

9.1.4 Actual values

The current position is displayed in the unit of measurement (degrees, metres or millimetres) set by you during configuration.

S_ERR	Current position deviation in INC (difference between target and actual position). If, during travel, this figure is greater than
kmx_se	the control will go into emergency stop and bit 0 will be set in the error flag "err_flag".
V_ERR	(only in simulation mode) Current speed deviation in INC/grade (difference between target and actual speeds).
DAC	Current DAC value in volts.

9.1.5 Axis status

Axis status	
axs_sta	Bit 0: Synch input

9.1.6 Move commands, VRG_BEF

This action switch can be used to trigger various move commands.

Start	0x81h	Taking into account vrg_v , vrg_a and vrg_b , move to position vrg_s (this function can be directly selected using F7).
New V/A	0x82h	Accelerate / retard to new speed vrg_v
Synch	0x83h	Taking into account vrg_v , vrg_a and vrg_b , move to position vrg_s . Check the occurrence of a synch pulse during travel. If such occurs, set the actual position to vrg_syn and brake as normal; otherwise, set the error flag to synch error.
Start Pull	0x84h	Follow the default position vrg_s . As the control always immediately attempts to reach vrg.s (without travelling a ramp), you must ensure that you

		do not select steps that are too large. (Travelling error if the path error is too big!). The max. acceleration of the motor should also be taken into account. This mode can be used to travel curves, for example.	
Stop	0x88h	Slow the moving axis down to zero, taking into account vrg_b (this function can be directly selected using F8).	
Not Stop	0x89h	Slow the moving axis down to zero with immediate effect (without braking ramp).	
POS=0	0x8Ah	Standardise angle to 0 359°, as per the section on standardisation	
POS=0 0x8Bh s		set actual position to 0.	
POS=VRG_S	SYN 0x8C	h set actual position to VRG_SYN	
Toggle		Taking into account vrg_v , vrg_a and vrg_b , move to position vrg_s , wait 'Delay' ms, set vrg_s = -vrg_s and start again from the beginning. vorn. Repeat this until it is cancelled.	
PToggle		Taking into account vrg_v , vrg_a and vrg_b , move to position vrg_s , wait 'Delay' ms and travel the same route again. Repeat this until it is cancelled (this function can be directly selected using F9).	
Delay		With this point, you can set the waiting time in ms between two move commands for 'Toggle' and 'PToggle'.	

9.1.7 Standardisation, VRG_FLG

The master always standardises the actual position automatically as soon as HALT is reached. The standardisation does not cause any increments to be lost (no cumulative errors, even if the unit is standardised to 0.0 after each journey).

None	0x00h	The position remains as it is after each journey.
Angle	0x01h	The angle is standardised at 0359°.
Zero	0x02h	The actual position is set to 0.0 after each journey.
Endlos	0x03h	From them start command, the unit travels to the next stop at VRG_V, regardless of how big vrg_s is. (Note: vrg_s must be sufficient for the acceleration ramp, otherwise endless travel will not become active.)
Round	0x04h	Round angle to 365°

9.1.8 Operating mode, VRG_TST

With the operating mode, you decide how the control will behave towards the outside world.

Inactive	0x00h	The control is switched off for this axis.
Active	0x80h	The full scope of the control (including error monitoring, etc.) is activated.
A. o. F.	0x81h	The control is active, but does not revert to emergency stop in the event of a travelling error.
Simulation	0x82h	The motor is simulated. This is a purely target value output.

9.1

	DAC/INC	0x83h	The co or the i	ontrol for this axis is switched off. The DAC incremental encoder input can now be used for their own purposes.	
.9	Standard	factors			
	knf_dac	This facto It is calcu	r serves lated by	s the purpose of internal conversion of target speed into DAC bits. means of the configuration.	
	knf_s	This facto It is also c	ctor serves the purpose of converting your specifications V, S, A, B, into Inc. to calculated by means of the configuration.		
	knf_e				
	knf_tim	Sampling	rate:	0 = 4 ms 1 = 2 ms 2 = 1 ms 3 = 0.5 ms	

9.1.10 Error messages

Axis errors. As long as this byte is not deleted, no new commands will be accepted.

err_flg 00h ok

- Bit 0=1 \rightarrow Following error. **anz_ser** has become greater than **kmx_se** -> OFF
- Bit 1=1 \rightarrow Synchronisation could not be carried out
- Bit 2=1 \rightarrow The axis card is not registering correctly
- Bit $3=1 \rightarrow$ External controller error

10 Step-by-step commissioning

The following section shows how to commission a motor or axis, step by step. Before beginning commissioning, the entire commissioning manual and hardware manual must be read.

For the first commissioning, the motor should be run without a load. The operator must have visual contact with the motor shaft.

Work through each step precisely. If individual steps are missed out, the motor may not function correctly or may behave in a manner that is difficult to explain.

10.1 Protecting the motor against overload

In order to protect the motor against overload during commissioning, the following points must be considered:

- From the motor data sheet: Maximum time for which the maximum current may flow
- Connect and commission the temperature sensor for the motor winding If no temperature sensor is available, the I2t control is the only protection against motor overload. See section: 3.9.3 I2t control
- Adjust I2t control
- Do not exceed the maximum speed and acceleration ramp

10.2 Enter motor parameters

Enter the values from the motor data sheet. The details relate to PM synchronous motors in star formation. More information can be found in section 3.14 .

Switch off motor supply: L1, L2, L3 off!

- 1. Inco path for motor configuration Ctrl.MotorConfig.Motor
- 3. Ls Is entered as L phase-phase: Ls = 2 * Lstr (Siemens specification Ld = rotational field inductance -> L phase-phase)
- 4. Ke Is entered as Ke phase-phase -> then they will all be correct in $V_{RMS}/1000U/min$

Is entered as R phase-phase:

Should there be any **uncertainty** regarding the correctness of Rs, Ls, Ke or if their units are unclear, the values should be verified in accordance with section 10.21 Fine-tuning of Ke, Rs and Ls.

Rs = 2 * Rstr

- 5. Inom Is given in Arms Imax Is given in Arms Ired Is given in ArmsIred = Inom (default)
- 6. Speed_Max Maximum mechanical speed of rotation
- 7. BurnMotorCfg, File -> Save

2.

Rs

10.3 Temperature switch

- 1. Connect motor and encoder (resolver, incremental encoder or SinCos) to controller.
- 2. Switch on 24V for controller supply; do **not** switch on motor supply (3 x 400V)!

10.3.1 Temperature sensor in resolver/SinCos cable

If there is a temperature sensor (resistor) in the resolver/SinCos cable, the motor temperature under Ctrl.Actual.Motor must display a logical value between 20 ... 30°.

Configuration of the temperature sensor

Inco path for motor configuration: Ctrl.MotorConfig.Motor

3.	Temp_Warn	Above this motor temperature, a warning is displayed Temp_Warn = 100°C			
4.	Temp_End	Above this motor temp switched to inactive. Te	erature, emp_Enc	an error is displayed and the controller is d = 120°C	
5.	Flag	No_Ke_adaption No_RsKe_TempComp No_TempSwitch	= 0 = 0 = 1	Temperature-dependent Ke compensation ON Temperature-dependent Rs compensation ON No bi-metal switch in the motor cable	

10.3.2 Temperature limit switch in resolver/SinCos cable

If there is a limit switch for motor overheating in the resolver-SinCos cable, the Actual Value for the value Ctrl.Actual.Motor will display the temperature -90° if the switch is closed and +190°C if the switch is open.

6.	Temp_Warn	Temperature warning =	100°C	
7.	Temp_End	Temperatur Error = 100	°C	
8. 0	Flag	No_Ke_adaption	= 1	Temperature-dependent Ke compensation OFF
9.		No_RsKe_TempComp	= 1	Temperature-dependent Rs compensation OFF
		No TempSwitch	= 1	No bi-metal switch in the motor cable

10.3.3 Limit switch in the motor cables

If there is a limit switch for motor overheating in the motor cable, the Actual Value for the value Ctrl.Actual.Motor will display the temperature +190°.

- 9. Temp_Warn Temperature warning = 300°C
- 10. Temp_End Temperatur Error = 300°C
- 11.
 Flag
 No_Ke_adaption
 = 1
 Temperature-dependent Ke compensation OFF

 No_RsKe_TempComp
 = 1
 Temperature-dependent Rs compensation
 - OFF No_TempSwitch = 0 Bi-metal switch in the motor cable

10.3.4 Temperature sensor in the motor cables

Temperature sensors placed in the motor cable must not be wired to signal pins!

Note insulation class! At the sensor pins, 50V is the maximum measuring voltage.

10.4 Configuring feedback

Information on the individual feedback systems can be found in sections 3.3, 3.4, 3.5 and 3.6 .

Several sets of feedback can be used for an axis. The typical usage involves an encoder that sits directly on the motor shaft and an additional encoder, e.g. on a gauge, that is placed after a gearbox or spindle.

In the case of applications with several feedback systems, the encoder sitting on the motor shaft is used for field control.

The second feedback system is used as feedback for the position controller in the drive. Both sets of position feedback can be sent to the master via the fieldbus.

If there is only one set of feedback available on the motor shaft, this is used for the field control and for the position control.

Ctr.	l.Mo	torC	onfi	g.FB	_Motor	Field

Ctrl.MotorConfig.FB_PositionCtrl

Feedback for field control

Feedback for position control

Example 1

One feedback system, incremental encoder:

Field control	Ctrl.MotorConfig.FB_MotorField	PM Encoder
Position control	Ctrl.MotorConfig.FB_PositionCtrl	Encoder
GinLink Feedback	Ctrl.MotorConfig.GinLink.FB_Ch_0	Encoder 32Bit
GinLink target value	Ctrl.MotorConfig.GinLink.Cmd_Ch_0	Speed

Example 2

Resolver on the motor shaft, SinCos on gauge, GinLink feedback channel 0 (32-bit wide position value)

Field control	Ctrl.MotorConfig.FB_MotorField	PM Resolver
Position control	Ctrl.MotorConfig.FB_PositionCtrl	Resolver
GinLink Feedback	Ctrl.MotorConfig.GinLink.FB_Ch_0	SinCos *1024 32Bit
GinLink target value	Ctrl.MotorConfig.GinLink.Cmd_Ch_0	Speed

Example 3

Resolver on the motor shaft, SinCos on gauge, GinLink feedback channel 1 (32-bit wide position value)

Field control	Ctrl.MotorConfig.FB_MotorField	PM Resolver
Position control	Ctrl.MotorConfig.FB_PositionCtrl	SinCos
GinLink Feedback	Ctrl.MotorConfig.GinLink.FB_Ch_0	Resolver *65536 32Bit
GinLink Feedback	Ctrl.MotorConfig.GinLink.FB_Ch_1	SinCos *1024 32Bit
GinLink target value	Ctrl.MotorConfig.GinLink.Cmd_Ch_1	Speed

Resolution of analogue feedback systems

The resolution of resolvers is 16 bit, 65'536 values; the resolution of SinCos encoders is 10 bit, 1'024 values.

10.5 Configuring fieldbus communication on the controller

Also see section 3.13 for more information. Inco path for GinLink configuration Ctrl.MotorConfig.GinLink

1.	Vcmd_100%	Maximur factor Must ma	m speed of rotation occurring in the axis. This is a standardisation atch the value in the IMD project configuration!
2.	LinkSamplingR	ate	Sampling rate of the superordinate position control of the fieldbus master. Must match the value in the IMD project configuration!
3.	Cmd_Ch_0	Standar	d: Speed 32Bit
4.	Cmd_Ch_1	Standar	d: MasPosErr 32Bit
5.	Cmd_Ch_2	Standar	d: +lq 32Bit
6.	FB_Ch_0	Select c This sele configur	orresponding feedback via the GinLink. ection determines the value for IncsPerTurn in the motor ation in the IMP project configuration
7.	FB_Ch_1	Standar	d: Additional feedback, select corresponding feedback.
8.	FB_Ch_2	Standar	d: Active current of the controller Iq 32 bit.

10.5.1 Configuration example

SinCos encoder Speed of rotation Sampling rate FB channel	512 st 3000 i 2 ms Chanr	rokes rpm nel 0				
Number of increments p	per revolution:	512 str	okes * 1	024		= 524'288 Inc/T
Number of increments p	per sampling ra	ite:	524'288	3 Inc/s * 30 60s	00 * 2ms	= 52428.8 Inc/2ms
Number of bits to be tra	insmitted by +-	52428.8	increme	nts:		= 17 bits (32 bit max.)
FB_MotorField FB_PositionCtrl	PM SinCos SinCos					
FB_Ch_0 Cmd_Ch_0	SinCos*1024 Speed	32 Bit				
IncPerTurn	524'288	512 str	okes * 1	024 (enter i	n IMD projec	t configuration)

The value should not drop below the minimum resolution of 4096 Inc per revolution.

Example 3					
SinCos encoder 40u separation			Gauge after sp	indle	
Resolver	16-bit resolution	า	on motor shaft		
Speed of rotation	4500 rpm				
Spindel	5mm/U				
Sampling rate	0.5 ms		0.0		
FB channel	Channel 0		SinCos		
FB channel	Channel 1		Resolver		
		5mm *	1024		
Number of increments p	per revolution:			= 128'	000 Inc/MotorTurn
(of SinCos)		40um			
Number of increments	128'000) Inc/T * 4500* 0).5ms	1/200 lpc/0 Emo	
Number of increments p	ber sampling rate.		60		= 4 600 mc/0.5ms
			00		
Number of bits to be tra	Insmitted by +- 4800 incl	rements:		= 14 b	its (32 bits max.)
FB MotorField	PM Resolver				
FB PositionCtrl	SinCos				
FB_Ch_0	SinCos*1024 32 Bit				
FB_Ch_1	Resolver*65536 32 Bit				
Cmd_Ch_0	Speed				
	1001000	405 * 44		. .	<i></i>
IncPerlum	128'000	125 * 10	024 (enter in IM	D proje	ct configuration)

10.6 Configuring the fieldbus communication in the software

Each axis also requires corresponding configuration in the software. This is necessary in order for the SAM to be able to correctly convert and interpret the data that it receives from the controller via the fieldbus. Certain standardisations are also required for trouble-free functioning of the axis on both sides (SAM and controller).

More information can be found in section 5.

10.7 Commissioning the feedback system

During the configuration of the feedback system (incremental encoder, resolver or SinCos), the number of increments per revolution must be entered.

For configuration of feedback see section 10.4.

10.7.1 Checking the direction of rotation

- 1. Move motor shaft or linear motor in a positive direction; the position must count upwards.
- 2. The encoder value must count upwards. Incremental encoder Ctrl.Actual.Encoder Resolver Ctrl.Actual.Resolver SinCos Ctrl.Actual.SinCos

🔄 Inco Explorer - C:\IMD\Bin\IncoExp.str								
<u>F</u> ile	Eile Help							
item			value	unit	^			
		🖹 🚞 Resolver	272.188	ResInc				
		-0.0 ADCcos	1805.757	adc				
		-±00 ADCpot	147	step				
		- 0.0 ADCsin	801.031	adc				
		-±00 AutoRefPhShiftState	0					
		-±00 AutoRefPhShiftValue	6		_			
		- 0.0 Cos	1805.695	adc				
		- 00 Inp1Time	0					
		-±00 MyPos	69865731	ResInc				
		- 0.0 Sin	800.875	adc				
		- 0.0 Sin2Cos2	59.479					
		-0.0 Speed	-0.063	ResInc/T				
		L±00 UserPos	69865730	ResInc	\mathbf{v}			
۱\ma	IKUS\NE I	192\Into-sac-U_UK			1			

Fig. 50: Actual values, resolver

For the resolver and SinCos encoder, make an additional check to see whether the value for Sin2Cos2 is within the limits Sin2Cos2_Max. Sin2Cos2_Min . If the Sin2Cos2 is too low, check the wiring and the assembly of the encoder.

- 3. If the direction of rotation is incorrect, invert the flag for the direction of rotation:
 - ...\\Ctrl.MotorConfig.Encoder.Flag.direction
 - ...\Ctrl.MotorConfig.Resolver.Flag.direction
 - ...\\Ctrl.MotorConfig.SinCos.Flag.direction

Once the flag for the direction of rotation has been changed, the axis needs to be re-commutated! To do this, burn the parameters to the flash prom and disconnect the power to the drive. Or repeat the commutation by hand using test mode.

10.7.2 Standard direction of rotation

Direction of rotation forwards = Look at the motor from behind; the motor must be turning clockwise.

10.7.3 Checking the resolution of the encoder

- 1. Set the User Pos of the corresponding encoder to 0: Ctrl.Actual.Encoder.UserPos = 0 Ctrl.Actual.Resolver.UserPos = 0 Ctrl.Actual.SinCos.UserPos = 0
- 2. Turn the motor shaft 360° in a positive direction as precisely as possible; move the linear motor

one magnet spacing in a positive direction as precisely as possible.

3. The User Pos should now display the value (positive) that has been configured. The turning or shifting of the axis should be carried out in such a way that it is possible to recognise the difference between encoders with 1024 and 1000 strokes.

10.8 Checking the actual position in the fieldbus master

Once the configuration has been entered into the IMD project and the servo controller, it can be checked:

Once the software configuration has been adapted, reload to target (trans)!

1. To do this, select the corresponding axis under "Axis" in the fieldbus master:

🐨 Inco Explorer - C:\IMD\Bin\IncoExp.str				
<u>File</u> _Help				
item	value		unit	^
⊡ NET192\				
⊡ linfo-sac-0\				
🗊 🎯 Info-sac-1 \				
🖃 🎯 Info-sac-2\				
🖃 🛅 Axis				
🕂 🛅 PhysicalAxis0		359.473	deg	
🕂 🛅 PhysicalAxis1		0.000	deg	
🛨 🚞 PhysicalAxis2		0.000	deg	~
\\markus\NETT92 UK				

Fig. 51: Position of the axis

- 2. Set the position to zero by hand
- 3. Turn by exactly 360° at the motor shaft Shift the linear motor by exactly one magnet spacing
- 4. The sign for the position and the value for the position must correspond to the movement.

10.9 External controller release

- 1. The external controller release ExtEn must be wired to 24V.
- 2. The two safety 24V inputs must be switched on. (Stecker X100)
- 3. The green LED on the front plate of the controller must light up.
- 4. The configuration under Ctrl.MotorConfig.Enable must be set in accordance with the requirements of the application.

More information on the configuration of the external enabler can be found in section 3.10

10.10 PWM

The sampling frequency of the output stage can be reconfigured in the motor configuration file under Ctrl.Motorconfig.PWM.PWM. This allows the user to individually adapt to match the requirements without requiring changes to the controller file (see section 6). In the case of a multiple controller (or SAC3x3), this configuration is only possible on axis 0 and then applies to all other axes of the controller.

Information on the PWM settings can be found in section 3.15.

10.11 Power

The power supply unit of the controller is configured under Ctrl.MotorConfig.Power. In the case of a multiple controller (or SAC3x3), configuration of the power supply unit is only possible on axis 0 and then applies to the entire controller.

Information on the power supply unit settings can be found in section 3.17.

10.12 Position controller

The type of control of the axis is specified under Ctrl.MotorConfig.PositionCtrl. In the case of axes without position feedback or open-loop stepper motors, virtual feedback of 4096 IncPerMotTurn is generated.

More information on the position controller can be found in section 3.16.

📁 0 (NET191/0) - motion 🕶 🗸 Config 0 -0.090000 deg 1.0000 Activa /alue unit iten InActivate - 🍙 v value un item Toggle 00 Overwrite_ON 1=ON :00 cmdPos 0.0000 de Motor none AutoCommutation ±00 U_torque ±00 cmdPos: 720.00 der Set Current ±00 FieldTurns per se Turn/s 00 Delay 250 ms Set_Voltage Field Rotatio Test 🕀 🛅 000 00 Count 0 cnt Current_sweep ode sweep setup ▶ Para ▶ File Assistant Varlog ▶ Test Debug About INIX ▶ Prop Properties 📥 👗 📵 NET191/0 ۲ 10 🔼 🏹

10.13 Finding and verifying the number of pole pairs

Fig. 52: Feld-Mode

U_torque	Motor voltage
FieldTurns per sec	Number of field revolutions per second

- 1. Run the motor without a load! Under Test select Field_Rotation mode
- Select voltage U_torque , start with 1V, slowly increase the voltage value. Select number of field revolutions FieldTurns_Per_sec default value = 1 Electrical rotational field turns 360° per second
- 3. Switch controller to simulation mode. To do this, use F3, F5. If the motor is still not turning at 10V, you must check the wiring.

Number of pole pairs	U/s
1	1
2	1/2
3	1/3
4	1/4

For precise determination of the number of pole pairs, it is recommended that you keep a log.

10.14 Verifying the direction of rotation (before commutation)

This test can also be carried out without commutation.

- 1. Run the motor without a load! Under Test select Field_Rotation mode
- Select voltage U_torque , start with 1V, slowly increase the voltage value. Select number of field revolutions FieldTurns_Per_sec default value = 1 → Electrical rotational field turns 360° per
- 3. Switch controller to simulation mode. To do this, use F3, F5. The motor must now be turning forwards!

If the direction of rotation is incorrect, invert the flag for the direction of rotation in the motor configuration: Ctrl.MotorConfig.Motor.Flag.direction

Once the flag for the direction of rotation has been changed, the axis needs to be re-commutated! To do this, burn the parameters to the flash prom and disconnect the power to the drive. Or carry out the commutation by hand using test mode.

10.15 Adjusting the current controller

The different current controller versions and parameters are described in section 3.9.

The parameters for the current controller can be automatically calculated by the SAC drive.

🐨 Inco Explorer - C:\indel\bin\IncoExp.str					
<u>File H</u> elp					
item	value	unit	^		
📄 📄 🚞 CurrentCtrl	PI (I_max_red)				
- ? CurrentCtrl	PI (I_max_red)				
-0.0 kPq	-1	A/A			
-0.0 klg	0.000	ms (
-0.0 kPd	0.000	A/A			
-0.0 kld	0.000	ms (
-0.0 I_Int_Max	57.274	Arms			
-0.0 l2t_up	2.000	s			
└_0.0 l2t_down	0.900	*/s	~		
NmárkúsNNETT917X JUK			1		

Fig. 53: Calculating the current controller

At parameter Ctrl.MotorConfig.CurrentCtrl.kPq enter (p component of active current controller) -1 .

After this, the parameters are automatically calculated for the active and idle current controllers. The calculated kP is the maximum possible value for stable current control! Normally, the P component must be reduced slightly in order to reduce whistling noises.

In the case of linear motors, the calculated P values are normally very high (approx. 50). The P value must be reduced depending on the noise build-up when activating the axis (F3, F2, F5).

In the case of axes with distinctive resonance points, the calculated kPq, kPd may be so high that the axis begins to whistle loudly as soon as it is activated in simulation mode. In this case, the kP values should be reduced in such a way that the whistling disappears.

In the case of iron-free linear motors and high sampling rates (16kHz), the integrator time constant can be very small: < 200us

If the kP is increased by the current controller in an axis that has already been set, the kP may need to be reduced by the position controller. The current controller is beneath the position controller, meaning that there is a dependency between the two controllers.

Idle current controller

The P component of the idle current control does not necessarily need to have the same value as the P of the active current controller. If the idle current integrator does not increase considerably, the idle current P can be reduced considerably. Particularly in linear motors, the control is very good, meaning that kPd can be reduced to half kPq.

Essentially, in cases of large P values (30 ... 50) the active current P can be reduced until the noises are bearable. Reduce the idle current P until the integrator begins to increase, typically kPd = 1 ... 5.

Calculation principles

The automatic adjustment of the current controller is based on the resistance and inductance of the motor; furthermore, the sampling frequency of the drive has a role to play.

I2t control

I2tup, I2tdown I_Int_Max See section 3.9 Current controller: Current Control 3 times $\mathbf{I}_{_{\text{MAX}}}$

10.16 Commutation

The commutation leads to the field offset (angle) between the electrical field in the stator and the magnets of the rotor being determined.

In **motors with a resolver** the field offset only needs to be set once. All motor manufacturers usually supply their motors with the same field offset. This means that the resolver is always assembled with the same alignment to the rotor. The field offset of resolvers is stored in the motor configuration file.

In **motors with an absolute feedback system** the field offset generally needs to be set each time the encoder is mounted on the motor. This also applies in the case of servicing, if a motor or an encoder needs to be replaced. The field offset of absolute feedback systems is stored in the motor configuration file.

Motors with an incremental encoder or sine-cosine encoder need to be commutated each time the drive is switched on. Various auto-commutation methods are available for this.

If the field offset is not right, the motor cannot be run properly. This manifests itself in the fact that, for example, the maximum performance or maximum speed of rotation cannot be reached. In the worst case scenario, the motor will turn backwards!

An optimally set field offset will increase the efficiency of the drive.

10.16.1 Auto-commutation with sine-cosine and incremental encoders

Incremental encoders, sine-cosine encoders and resolvers can be commutated automatically.

- 1. Under Ctrl.MotorConfig.AutoCommutation select the commutation procedure and parameterise. (See 3.8 Auto-commutation)
- 2. Select the flags in the auto-commutation:

ON_lf_Ok=0 If the commutation was successful, the axis remains active.

Again=1 This means that the operating mode always remains auto-Commutation.

- 3. Under Ctrl.Test select AutoCommutaion mode
- 4. Activate the axis in simulation mode using F3, F5
- 5. Under Ctrl.Actual.AutoCommutation.Ok check whether the commutation was successful.
- 6. Repeat the commutation several times at various positions.

The field offset Ctrl.Actual.AutoCommutation should not deviate by more than +-10° across the entire travelling area.

7. Reset the flags in the auto-commutation; test mode to none.

ON_If_Ok=1 Again=0

Never activate the axis (either in simulation mode or active mode) if the commutation is not working perfectly!

10.16.2 Auto-commutation with absolute encoders

- 1. Configure absolute encoder; set auto-commutation method to Absolut Encoder
- 2. Determine the field offset by hand. (Section 10.16.3 Adjusting the resolver offset by hand)
- 3. Under Ctrl.Test select AutoCommutaion mode
- 4. Carry out auto-commutation
- 5. Burn the motor parameters to the flash and save in a file.

10.16.2.1 Auto-commutation with Hiperface

The right field offset must be found and set when the Hiperface is commissioned for the first time. The following steps must be carried out the first time the motor is commissioned.

- 1. Configure Hiperface.
- 2. Check the direction of rotation of the analogue (SinCos) and digital feedback of the Hiperface. The counting direction of both sets of feedback must match (counting direction of the increments).
- 3. Set auto-commutation to absolute encoder. The following flag must not be set!

ON_If_Ok=0

- 4. Carry out commutation with Hiperface in test mode. Now the position of the absolute encoder is synched.
- 5. The field offset then needs to be found. There are two options available. To do this, the motor must be able to move freely.
 - 1) Adjust the field offset using auto-commutation mode (see 3.8).
 - 2) Adjust the field offset by hand (see 10.16.3)

The field offset has now been found and is entered under MotorConfig.FB MotorField.

6. Now set auto-commutation back to Absolute Encoder. Test the commutation using test mode. In addition, the drive should also be switched off and back on once. To do this, you must first burn the motor configuration file.

7. If the commutation was successful, the following flag can be set in auto- commutation. The axis is then automatically switched to active following successful commutation.

ON_If_Ok=1

10.16.3 Adjusting the resolver offset by hand

In order to get the best possible result for the field offset, the field offset should be adjusted by hand.

One of the auto-commutation methods can essentially be used in order to gain an initial value for the field offset of the resolver. Wherever possible you should use auto-commutation with 360° field rotation (see section 3.8.5). Once the auto-commutation has been carried out, the field offset is automatically stored under Ctrl.MotorConfig.FB_MotorField.Field_Offset.

Then switch the auto-commutation back off and carry out the following steps for the exact field offset.

- 1. Phases and resolvers must be connected correctly. The motor must be able to turn freely, without a load
- 2. Under Ctrl.Test select Set_Current mode \rightarrow Idle and active current can be entered by hand.
- 3. Switch on external release; green LED "Ext.En" on the servo controller must light up Safety inputs must also be switched on.
- 4. ca. 1/10 I_{NENN} Set idle current at "I_Reactive" and switch the controller to simulation mode. To do this, use F3, F2, F5. If the motor is turning, the correct resolver offset has not yet been found. Use F3 to switch the motor off again.
- 5. Resolver Offset Ctrl.MotorConfig.FieldOffset change until the motor is at a standstill. (try by hand to see which direction it turns more easily in)
- 6. When the motor is at a standstill, continually increase the idle current to I_{MAX}. Only briefly, approx. ½ second PowerOn/PowerOff or repeat F3, F5, F3 until the motor is at a standstill at I_Reactive = I_{MAX}.
- 7. "I Reactive" = 0V
- 8. Check whether the right resolver offset has been found:
- 9. Under Ctrl.Test select Set_Voltage mode
 → Idle and active voltage can be entered by hand.
- Set U_torque to 1 ... 10V. Switch controller to simulation mode. To do this, use F3, F5. The motor must be turning forwards! Direction of rotation forwards = Look at the motor from behind; the motor must be turning clockwise.

If the motor is not turning clockwise, an incorrect resolver offset has been found. (There are several).

11. BurnToFlashProm, SaveToFile, U_torque = 0V, Flag = 0

10.17 Verifying the direction of rotation (after commutation)

For this test, the commutation must have been carried out successfully.

- 1. Run the motor without a load! Under Test select Set_Voltage mode
- Select voltage U_torque , start with 1V, slowly increase the voltage value.
 Warning: The motor turns more quickly at 1V than in field rotation mode!
- 3. Switch controller to simulation mode. To do this, use F3, F2, F5. The motor must now be turning and counting forwards!

10.18 Gain offset correction for resolvers and SinCos

Gain and offset errors as well as gain asymmetry in resolvers or SinCos encoder systems can be evaluated and corrected in the software.

The "SinCos" assistant can be used to do this. The assistant is a component of the software directly in the drive.

🐨 Inco Explorer - C:\indel\bin\IncoExp.str			×
<u>File</u> <u>H</u> elp			
item	value	unit	^
🖃 🧰 Assistant			
🖃 🧰 SinCos	peace		
-abc AstSinCos0	peace		
abc SinCos	peace		
+ 00 State	0		
- 00 Error	0x0000000		
- 00 Warning	0x0000000		
🖃 🧰 Cmd			
t f(x) Startup(1:d)	call		
t(x) Start()	done		
t(x) Stop()	call		
t f(x) Accept()	call		
🗀 🚞 Prop			
- 00 State	1		
00 Options	0x0000000		_
🕂 00 Flags	0x0000000		
00 Requests	0x0000000		
00 Criticals	0x0000000		
🖹 🚞 🛅 Inp			
- 00 LogTime	5	s	
00 Source	Resolver		
🕒 🗁 Out			
-0.0 Offset_Sin	-2.111		
- 0.0 Offset_Cos	1.318		
-0.0 GainAsym	-0.006554		
-0.0 PhaseShift	0.005621		
└ 00 LoggerID	1		
🕂 🧰 Log			\mathbf{v}
างmarkusงที่ยาวิจางรักษห			

Figure 10.1: SinCos adjustment

10.18.1 Resolver adjustment

Resolver adjustment

- 1. Allow the motor to run at a constant 100 rpm (corresponds to 600°/s)
- 2. Start SinCos assistant Start()
- 3. Wait for calculation of gain, offset, etc.
- 4. Accept adjustment values Accept()
- 5. Burn and save parameters

Ctrl.Assistant.SinCos.Cmd.Start() can be started. The logger time can be left at 5s (default value).

The status of the procedure is displayed in Inco Explorer:

- Waiting for logger, please move axis
- Logging
- Calculating Correction Values
- Peace

Once the test has been carried out, the results of the adjustment are displayed under Ctrl.Assistant.SinCos.Prop.Out .

These must now be accepted using Ctrl.Assistant.SinCos.Cmd.Accept() . Finally, the adjusted values must be burned to the flash prom and saved.

10.18.2 SinCos encoder adjustment

Wherever possible, move the axis along the entire area of the feedback system. In the case of rotational feedback systems, at least one motor revolution is sufficient; in the case of linear feedback systems, the entire gauge must be travelled.

The speed must be selected in such a way that at least 40 measurement values of a full sine oscillation can be recorded per sampling period.

Example

Rotational encoder with 1024 sine periods Sampling rate 16kHz

	16000 kHz
Speed of rotation for SinCos adjustment	= 0.39 U/s (140°/s) 1024 * 40

Under Ctrl.Assistant.SinCos.Prop.Inp.LogTime you can enter the time for the log. This is where the time for the entire movement is entered.

SinCos adjustment

- 1. Allow the motor to run along the entire length of the feedback system
- 2. Enter the time for the movement LogTime
- 3. Start SinCos assistant Start()
- 4. Wait for calculation of gain, offset, etc.
- 5. Accept adjustment values Accept()
- 6. Burn and save parameters

10.19 Adjusting PID parameters

The PID parameters for the motor must essentially be adjusted with a load. When adjusting the PID parameters for the first time, use a motor without a load for reasons of safety! If the motor vibrates too heavily, this can damage the mechanics.

The PID parameters can be determined using different approaches:

- impact response, step response; optimisation according to Chien, Hrones and Reswick
- Optimisation procedure according to Ziegler and Nichols
- "Axis Turner" tool from Indel, see section 11 Bode-Sweep PID-Wizard

10.19.1 Optimisation procedure according to Ziegler-Nichols

The control route is first run with a simple P controller. The P component is increased until the control route displays oscillations of a constant amplitude. The controller can be set optimally from the set critical P component (kP crit) and duration (Tk) of the resulting oscillation.

Controller type	I component	D component	P component
Р	-	-	0.5 * kpkrit
PD	-	0.125 * TKRIT	0.8 * kPKRIT
PI	0.85 * TKRIT	-	0.45 * kPKRIT
PID	0.5 * TKRIT	0.125 * TKRIT	0.6 * kPKRIT

10.19.2 Procedure for adjusting the PID parameters

Log the	following	parameters	at 1kHz
---------	-----------	------------	---------

Ucc	Ctrl.Actual.Power
V_{CMD}	Ctrl.Actual.PositionCtrl.cmd_V
V_{ACT}	Ctrl.Actual.PositionCtrl.act_V
S_{ERR}	Ctrl.Actual.PositionCtrl.err_S
SINT	Ctrl.Actual.PositionCtrl.err_S_int
l _Q	Ctrl.Actual.CurrentCtrl.act_lq
	U _{CC} V _{CMD} V _{ACT} S _{ERR} S _{INT} I _Q

- 1. **PID parameters in Inco-Tree**: Ctrl.MotorConfig.PositionCtrl
- 2. Set all filters to none : Ctrl.MotorConfig.Filter.Filter_0,1,2,3 Also set speed filter to none : Ctrl.MotorConfig.SpeedFilter

3. Default parameters:

HoldToStandbyTime	=	100ms	
PID stand-by	=	0	set all parameters to 0
PID forward	=	0	set all parameters to 0
PID backward	=	0	set all parameters to 0
phvSpeed, phvAcc	=	0	set all parameters to 0

4. As a starting value, select $kP = I_{NOM} / 50$ Ctrl.MotorConfig.PositionCtrl.forward.kP

Example Motor with $I_{NENN} = 2.4 \text{ A} \rightarrow \text{kP} = 0.05$

5. Change to the fieldbus master. Specify a small ramp:

Axis.PhysicalAxis0.Cmd.Test.cmdPos1	=	360°
Axis.PhysicalAxis0.Ramp.Cmd.cmdV	=	600 °/S (100 U/min)
Axis.PhysicalAxis0.Ramp.Cmd.cmdA	=	5000 °/S2
Axis.PhysicalAxis0.Ramp.Cmd.cmdB	=	5000 °/S2
Axis.PhysicalAxis0.Ramp.Cmd.cmdJ	=	0%

You can also select a steeper ramp, e.g. 50'000 °/s2. This has the effect that natural resonance is generated.

Consider the characteristics of the motor and load!

Travel this ramp in **simulation mode F3, F5**. Start ramp travel using F7. If the motor is vibrating heavily, immediately switch it back off using F3 (Inactive) or F8 (Stop) and reduce the value of kP.

This information applies to a gear of 1:1, or refers to the motor shaft!

6. Increase "kP PID forward" until the vibration in the horizontal section of the travelled trapezoid does not increase or decrease. -> Use logger.

Fig. 54: Critical amplification kP crit

From fig. 7.9.1: this is the critical amplification "kP crit"; the period of vibration measured with the logger is the critical period of time "Tk".

Fig. 55: Critical amplification kP crit too high

7. Apply the following formulae for kP, kI and kD:

	kP	=	0.6 * kPkrit	
	kl	=	0.5 * Tk	
	kD	=	0.12* Tk	
From example:	kP	=	0.6 * 0.13	= 0.78
	kl	=	0.5 * 54	= 27 ms
	kD	=	0.12 * 54	= 6.48 ms

Fig. 56: First version of the PID parameters

8. Continually increase the value for kP. This means that the following error is reduced and the curve becomes smoother. At the same time, the ramp should also be changed:

Axis.PhysicalAxis0.Cmd.Test.cmdPos1 Axis.PhysicalAxis0.Ramp.Cmd.cmdV Axis.PhysicalAxis0.Ramp.Cmd.cmdA Axis.PhysicalAxis0.Ramp.Cmd.cmdB Axis.PhysicalAxis0.Ramp.Cmd.cmdJ

=	3'600°
=	6'000 °/S (100 U/min)
=	5'000 °/S2
=	5'000 °/S2
=	0%

- 9. Repeat steps 6 and 7 above until you reach a curve form with the following criteria:
 - Req Speed and Speed are congruent
 - After travelling the ramp, the parameter ANZ_S matches the specification VRG_S at +- 1%.
 - No extreme vibration behaviour in the event of current and following errors.

Fig. 57: kP was increased until the current and following error vibrate again

10. From example: kP was increased to 0.6 -> at this setting, the current and following error begin to vibrate again.

Reduce kP again to approx. 80 ... 90% of the critical value: kP = 0.5

- 11. The PID parameters for "PID stand-by" arise from the "average" of forward and backward. For kP stand-by, enter approx. half of the average.
- 12. The motor should essentially run with these parameters. The fine-tuning that is still required or the adjustment with a load require a high degree of experience, and sometimes also patience. We will be happy to help you in setting the control weights.
- Until now, the motor has always run in simulation mode. For the fine-tuning, the motor is run in "Active" (function button F4) operating mode. This switches on the superordinate position control.
- 14. The found parameters must be loaded into the flash prom of the controller using "Burn Values to Target" otherwise the values will be lost when you power the unit off. Finally, the values should be saved in a file using "Save Values to File".
- 15. Apply the same procedure for PID backward.

10.20 Adjusting lead values

phvSpeed

The lead value for speed is a target current specification. It removes speed-related losses.

- 1. Measure the current during the highest possible constant travel
- 2. Speed-related lead value:

phvSpeed = const current / const v

Example: Constant travel at 3000 rpm with 6A phvSpeed = 6A / 3(1000)U/min = 6 / 3 = 2 A@Spd

The integrator (Pos_Err_int) should now remain constant during continual travel.
 Optimal: Pos_Err_int < 1000 Inc

phvAcc

Is an acceleration or retardation lead value that adds the current required for the acceleration / retardation to the target value.

PhvAcc is defined as current consumption in A at acceleration / retardation of 0 at 1000 rpm in one sec.

- 1. Measure the current during the longest possible retardation journey -> gives, for example, 12A for retardation in 250ms from 0 to 3000 rpm
- 2. phvAcc = 12Arms / 3 (1000)U/min * 025sec = 12 / 3 * 0.25 = 1 A@acc
- 3. The integrator (Pos_Err_int) should now be symmetrical during the acceleration and braking ramp

10.21 Fine-tuning of Ke, Rs and Ls

This adjustment is not compulsory. If the data from the data sheet is entered with the correct standardisation for strand values (phase-phase), the motor should also work without any problems!

Fine-tuning can also be used to verify the values from the data sheet. This allows errors originating from any old data sheets or incorrect details to be eliminated early. If the Ke is incorrect, this will have a direct impact on the dynamics of the control.

This additional fine-tuning is also worthwhile in the case of applications with large loads or extremely fast ramps.

Changes to Ke, Rs, Ls will only be accepted if the axis is switched to inactive and then back to active.

Uq	U Torque	Active voltage
Ud	U Reactive	Idle voltage
Iq	I Torque	Active current
Id	I Reactive	Idle current
Err_Iq_Int	I Torque Integrator	Integrator active current (current con- troller)
Err_Id_Int	I reactive integrator	Integrator idle current (current con- troller)

The sequence must be adhered to!

- 1. Set field offset (resolver offset) when the unit is at a standstill using Imax
- 2. Set Ke in such a way that Err_lq_Int is 0, wherever possible, at full rotational speed (without load)

 $Uq = Iq^*Rs + wKe = Iq=0 = 0 + wKe$ remains just -error

3. Set Ls in such a way that Err_Id_Int is 0 (symmetrical), wherever possible, during up/down ramp

If Err_Id_Int is neg at ramp up: If Err_Id_Int is pos at ramp up: Ls too small Ls too large

 Set Rs in such a way that Err_lq_Int is constant (and near 0), wherever possible, during ramp. If Err_lq_Int is neg at ramp up: Rs too small If Err_lq_Int is pos at ramp up: Rs too large

10.22 Removing resonance

Methods for reducing high-frequency resonance, caused by gear or belt tolerance:

Speed-Filter: kT_Speed

Resolver filter, time constant for "resolver speed" (1ms). Ctrl.MotorConfig.PositionCtrl.kT_Speed

- increase kT_Speed in small steps.
- kT_Speed can be selected as approx. 5 ... 10 times smaller than kD.

kd

Ctrl.MotorConfig.PositionCtrl.forward.kd

- kd works best with SinCos encoders (high-resolution encoders)
- can also be used with resolvers, possibly with reduced effect
- a kd that is too great will create whistling noises

kD

Ctrl.MotorConfig.PositionCtrl.forward.kD

- kD as small as possible
- in the case of a smaller kD, kP can be increased

Current controller

Ctrl.MotorConfig.CurrentCtrl.kPq Ctrl.MotorConfig.CurrentCtrl.klq Ctrl.MotorConfig.CurrentCtrl.kPd Ctrl.MotorConfig.CurrentCtrl.kId

• reduce kPq, kPd

Dead time compensation

Ctrl.MotorConfig.PWM.DeadTime_correction

• switch off dead time compensation (none)

Methods for reducing low-frequency resonance, caused by large masses:

Position integrator

Ctrl.MotorConfig.PositionCtrl.Pos_Int_Max

• reduce integrator limitation (any) (Standard: 7600)

kD

Ctrl.MotorConfig.PositionCtrl.kD

• increase D component in the control

Frequency filter 0 ... 3

Adjust filter with bode sweep.

11 Bode-Sweep – PID-Wizard

The existing PID parameters can be optimised using a bode sweep. In addition, you can configure up to 4 bi-quad filters in order to eliminate disruptive resonance / dissonance.

11.1 Motion tool settings

Figure 11.1: Configuring a sweep

- 1) Test-Mode: Bode sweep (drop-down menu)
- Activate speed filter for bode sweep
 If a speed filter is configured, this flag must be switched on during the
 bode sweep. Also see section Fehler: Referenz nicht gefunden Fehler: Referenz nicht

gefunden

- Activate current filter for bode sweep The current filters should only be switched on for the bode sweep if the resonance is so strong that a decisive bode sweep is impossible.
- 4) Active current for bode sweep
- 5) Start frequency
- 6) End frequency

11.2 PID Wizard settings

Figure 11.2: PID Wizard

- 1) Read Target: Load sweep data from controller
- 2) Write to Target: Copy filter values and PID parameters from the folders New Filter and New PID into the drive
- Save, load sweeps Before a sweep is saved, it must be selected in the variables tree. Also see point 5).
- 4) Copy PID parameters and filter settings from the drive into the PID Wizard (folders New Filter and New PID)
- 5) Select a sweep
- 6) Delete a filter or an entire sweep. Select the sweep/filter in the variables tree, then delete
- 7) Target selection: first select the target, then select the drive within the target

11.3 Recording a bode sweep

The first sweep is essentially carried out with roughly set PID parameters and without any filter.

Before starting, the current controller and the SinCos (resolver) must be adjusted. See:

10.18 Gain offset correction for resolvers and SinCos 10.15 Adjusting the current controller

- 1. Select the test mode Bode_Sweep in the motion tool
- 2. Delete flags for SpeedFilter, Filter enabled
- 3. At the first sweep, set I_Torque to approx. 1/4 ... 1/3 of INENN; it is best to start with a low current in order to not overload the motor or the mechanics.

The I2t control should also be correctly set in order to avoid motor overload. (See section 3.9.3 I2t control)

The sweep current should eventually match the current that actually flows during operation.

- 4. Activate the drive in simulation mode (F3, F2, F5)
- 5. \rightarrow The frequency sweep is carried out
- 6. In the PID Wizard, click on Read Target
- 7. \rightarrow The log is loaded and displayed
- 8. After the bode sweep, set the test mode back to None .

11.4 Procedure for optimising the control route

First sweep

As a first step, create a sweep with roughly set PID parameters and moderate current.

Observer-Filter

Should there already be resonance in the upper frequency range, or in the case of encoders with very low resolution, it is recommended that you configure the observer filter. See Fehler: Referenz nicht gefunden Fehler: Referenz nicht gefunden.

First only set the cut-off frequency of the filter; enter the value $kP_{lq} = 0$.

In the case of encoders with very low resolution from 2048 increments per revolution, the cut-off frequency can be set between $F_g = 180 \dots 450$ Hz.

Too low values for the cut-off frequency negatively affect the bandwidth of the system and may lead to deterioration in the quality of control.

For high-resolution SinCos encoders with an interpolated resolution greater than 1'000'000 increments per revolution, the cut-off frequency is, for example, $F_g = 600 \dots 1000$ Hz.

When the observer filter is switched on, the flag SpeedFilter enabled must be switched on. See 11.2 PID Wizard settings.

Increase current

Then increase the sweep current and set it in such a way that it roughly matches the current required for the application.

Gain phase reserve in the lower frequency range

In order to gain more phase reserve in the lower frequency range, it has proven useful to use a lowpass filter with positive gain.

The gain can be configured at up to approx. 6dB with a quality factor (Q) of between 0.9 and 1.1. Also see fig. 63 and fig. 64 in section 11.7.

Optimise PID parameters and filters

First define suitable PID parameters, then start the configuration of the filters. Generally speaking, the best results are achieved with optimum PID parameters and notch filters.

11.5 Evaluating a bode sweep

Signals smaller than -35dB are no longer relevant for the control and optimisation of filters. The parameter Ctrl.Test.sweep_f_end can be adjusted accordingly.

In this example it is reduced from 1000 Hz (default) to 600 Hz.

The PID Wizard can only display sweeps with the same start/stop frequencies at the same time!

Before the start/stop frequency is changed, all sweeps should be deleted from the PID Wizard. (See Deleting a sweep, page: 105 Paragraph: 5)

Figure 11.3: Max. Setting frequency

The rest of the parameters should not be changed (except the current).

At the start of the optimisation work, the existing PID parameters and filter values must be accepted in the PID Wizard.

To do this, click on CopyNewPID/Filter from Origin . The parameters are copied into the folders New PID and New Filter .

Then the filters and PID parameters in the folders New PID and New Filter can be adapted for the purposes of optimisation.

Figure 11.4: Setting filters, PID

Setting aids

Under Guides you can choose to display lines and circles designed to guide you. These lines contain various stability criteria.

There are three different "severity grades" that can be selected for the stability:

- Aggressive
- Moderate
- Conservative

Whereby the control is usually designed with Aggressive cut-off values.

- AR Amplitude margin, 4.6 dB for aggressive: At -180° average for the phase, minimum attenuation of -4.6 dB remains in the open loop
- PR Phase margin In the case of 0 continuity in the signal, a phase reserve of 41.4° remains
- Mt Stability limit, 3 dB reserve for aggressive In the closed loop, the excessive increase in the case of transient response is never greater than 3 dB
- Ms Stability limit, 6 dB reserve for aggressive

11.6 Effect of the PID parameters

kP component

Fig. 58: Effect of the kP component

In the Bode and Nichols diagram, increasing the kP component causes the entire curve to be shifted upwards.

kl component

Fig. 59: Effect of the kI component

In the Nichols diagram, increasing the kI component causes the phase reserve to be raised in the low frequency range and the curve to swing to the right.

The ratio between the I component and the D component should always be 4:1 wherever possible. I component 4 x greater than D component. This corresponds to the theory of Ziegler-Nichols.

kD component

Fig. 60: Effect of the kD component

In the Nichols diagram, increasing the kD component causes the curve to be shifted to the right and upwards. Alongside the increase in the level, the phase reserve also increases.

kd component

Fig. 61: Effect of the kd component

The kd component increases the phase reserve in the upper frequency range. A prerequisite for optimum impact from this parameter is high resolution in the encoder system.

The quick changes in the high frequency range must be able to be processed with a corresponding "volume" of path information. The kd works best with high-resolution SinCos encoders.

The kd cannot be chosen at any size. The control route reacts with loud noises and current whirring.

11.7 Current filters

1... 4 current filters can be configured depending on the motion board or servo controller.

You can essentially configure as many filters as the computational power allows. The number of filters therefore depends on the sampling rate of the position controller.

In the case of AX4 or MAX4 boards with their own application, it is possible that there will be no computational power left for current filters.

There are 3 different types of filter available: low-pass, notch and two-load.

Filter-Parameter

The quality can be altered within the range of 0.5 ... 5.

The attenuation can be changed between -80 ... +6dB. Amplification of more than 1dB may not be able to be implemented in the real control route.

Low-Pass

amplification

Fig. 63: Low-pass filter 6dB amplification

Low-pass filters with positive amplification can be used to increase the phase reserve.

Fig. 64: Example: low-pass filter with 6dB amplification at 210Hz

Notch

Fig. 65: Notch filter -6dB amplification

Fig. 66: Notch filter 6dB amplification

Notch filters are particularly suited to reducing excessive increases in resonance or raising the level in a targeted manner.

Two-Load

Fig. 67: Two-Load Filter Güte=3

Two-load filters with increased quality can be used to compensate for a pole zero. However, this is to be used with caution as the filter may be counter-productive in the case of low shift in the resonance.

11.8 Optimisation roles

The locus of the Ziegler-Nichols diagram must not touch the two circles Mt Complementary Sensitivity Circle and Ms Sensitivity Circle .

The gain of the filters can be positive or negative. Speed Filter

The speed filters have a direct impact on the actual speed. If one of the speed filters is being used, the flag Ctrl.Test.SpeedFilter enabled must be switched on during sweeping

11.8.1 Observer Filter

Higher-frequency resonance and resonance caused by "elastic encoder attachment" can be largely eliminated with the help of a speed observer.

The observer filer comprises, on the one hand, a low-pass filter with cut-off frequency F_g and, on the other hand, the actual observer with the control weight kP_lq. The attenuation of the low-pass filter is -40dB per decade.

The control weight kP_lq can also be set to 0. This only leaves the low-pass filter.

F_g cut-off frequency; in the case of low-vibration mechanics the cut-off frequency can be set to 600 Hz. In the case of mechanics with tolerance and belts, the cut-off frequency may need to be reduced to 200 Hz.

Too low values for the cut-off frequency negatively affect the bandwidth of the system and may lead to deterioration in the quality of control.

kP_lq P component for observer filters

The P component for the weighting of the observer must be determined empirically. To do this, start with a very small value: 0.0001.

Continually increase the value until the phase reserve increases. The optimum has been reached when there is still sufficient amplitude reserve when the phase reserve has been maximised.

The speed control bandwidth is increased without reducing the phase reserve.

Characteristics of the low-pass filter

Fig. 68: Low-pass filter 2nd order

Due to its better characteristics, the observer filter is preferable to the average filter.

11.8.2 Average Filter

kT_Speed

The D component of the PID controller generates noise, which can be reduced slightly with kT_Speed. If there is a large mass, kT_Speed can be set at up to approx. 1/10 of the duration Tk. Always as low as possible and only as high as necessary.

In the case of two overlaid oscillation times:

If two oscillation times are displayed (e.g. 6ms belt oscillation time, 100ms mass vibration time), aid can be provided in the form of **kd** (acceleration error or D component of speed controller).

To do this, the kd is increased in very small steps. A compromise must be found between the smallest possible vibration behaviour and the lowest possible noise build-up in the drive.

If the kd is used, the resolver filter kT_Speed must be set to 0.1.

Characteristics of the average filter

Fig. 69: Average Filter

11.9 Gantries

The following points must be considered when sweeping double Y gantries.

- Select such currents for the sweeping that the motors and mechanics are not overloaded.
- The axes must be decoupled for the recording of the bode sweep
- Place the X and Y axes in the centre and sweep
- Whilst one axis, Y1, is being swept, the other axis, Y2, must be activated and held in simulation mode.
- After the first sweep and the optimisation of the PID parameters/filters, the found parameters must be loaded into both axes, Y1,2. Then activate Y2 axis in simulation mode and hold with the optimised PID parameters/filters. Repeat the sweep for axis Y1.
- Several sweeps should be recorded in order to find optimum parameters that are valid for the entire working area. To do this, determine a matrix with points with spacing of 10cm. Travel to all points with the gantry and create a sweep with **both** axes, X1 and X2.

12 Commissioning a stepper motor without feedback

2-phase stepper motors are controlled with a separate current controller for each phase: Phase U = Iq (active current controller) Phase V = Id (idle current controller)

There are therefore 2 current controllers, phase U = Iq and phase V = Id, that must follow the sine/cosine currents. For this reason, you can only use a P controller; the kI is not used and remains at 0.

There is, of course, no position controller as there is no feedback.

The kP of PosCtrl is used to set the basic current: Istandby = Motor.In * PosCtrl.standby.kP Iforward = Motor.In * PosCtrl.forward.kP Ibackward = Motor.In * PosCtrl.backward.kP

When kP = 1, the defined I_nom current of the motor is applied.

The lead values phvSpeed and phvAcc function as normal

The fieldbus feedback is made of FieldAxisPos, i.e. with 4096Inc/turn

Important

- The stepper motors have a very high Ke (24V motors approx. 30-60V; best to measure with, for example, a battery drilling machine)
- When field-controlled, they therefore only run up to 400-600 rpm. In addition, field weakening (increasing -Id) would have to be introduced, but has not yet been implemented.
- Without FB control, they run higher, but from this speed of rotation the current coincides, meaning that at 2000 rpm only 200mA flows instead of 2A, and the torque therefore decreases.
- The current, kP, must be at approx. 2-8
- Rs, Ls, Ke are still entered for 3Ph_pp -> convert
- When there is no load, resonance is to be expected; the motor is only standing still
- With a load, a smaller current is better, depending on the speed of rotation (Pos_kP=0.8, although it is normally not reached anyway)
- Encoders with, for example, only 4x400=1600Inc/T are not sufficient for field control, as only 1600/50/4 = 8 Inc remain for a 90degree motor field.
- run under 4096Inc/T sicher _woFB, encoder to SAM, small PID_P in SAM

13 Firmware update, parameter update

Alongside the firmware, the INFO-ACS controller also requires two configuration files:

Controller firmwareSystem.sMotor dataFile.cpf

The motor data contains the PID parameter sets, physical constants such as ohmic resistance, inductance of the motor, etc.

Firmware and parameter updates can be burned to the flash prom of the controller either from the parameterising programme INIX-Motion or using the console programme ACSUpdate.exe .

Firmware and motor data can also be carried out on remote targets via a network.

13.1.1 Updates to parameters and software

Prerequisites:

- INCO server must be in operation
- 24V supply for SAC controller
- Target must be registered
- Active link if not communicated with serial target
- ACSUpdate.exe

The programme ACSUpdate.exe is located in the folder "..\acs\bin".ACSUpdate.exe is a DOS programme. To start it, open a DOS box. Structure of the command:

13.1.2 Burning firmware or motor parameters to the flash prom

The files (motor parameters and firmware) are transmitted to the programme via command lines. ACSUpdate.exe orients itself using the file endings; the sequence is not important. Before burning, ACS-Update checks the version numbers of the existing software and the software to be loaded. With the extension [-a] (always), the version to be loaded is always burned; without the extension, it is only burned if it is a newer version.

c:\ACSUpdate TargetName [*.s][-a] [*.cpf][-a] [*.chf][-a]

Examples

Burn the controller software "system.s" and the motor parameters "motor.cpf" to the flash PROM as long as it is a **newer** version than the one in the flash prom. The target is axis 0, registered on a power PC master.

C:\ACSUpdate PPC\Axis0 system.s motor.cpf

Always burn the controller firmware "system.s" (only) to the flash PROM, even if it is an older version. The target is an ACS controller, which is addressed via the serial interface.

C:\ACSUpdate INFO-ACS a:\acs\update\system.s -a

13.1.3 Saving motor parameters in a file

Motor parameters are saved with the extension [-s] (save) in a file with the specified ending [*.cpf]:

c:\ACSUpdate TargetName [*.cpf][-s]

[*.cpf] = motor parameters

Examples

Save the motor parameters in a file. The target is an ACS controller at a serial interface and is located within a network.

C:\ACSUpdate Remote_ACS motor.cpf -s

13.1.4 Copying parameters from the RAM into the flash prom

ACSUpdate with the extension [-h] burns the current motor parameters from the controller's RAM to the flash prom:

c:\ACSUpdate TargetName [-p]

[-p] = motor parameters

Example

Burn the motor parameters from the ACS controller on a stand-alone master to the flash PROM.

C:\ACSUpdate INFO-SAM/AXIS0 -p

13.1.5 Information

The extension [-i] compares the firmware version or controller parameter version in the flash PROM of the controller with the version to be loaded and shows whether an update is required. The update is not carried out!

c:\ACSUpdate TargetName [*.s][-i] [*.cpf][-i]

13.1.6 Automating flash PROM updates

In order to be able to burn flash PROM updates in a logical manner for a machine or system with several motors, including those distributed within a network, a configuration file can be transmitted to the programme ACSUpdate.exe. The configuration file contains all of the commands needed to burn several flash PROMs. The file ending must be [*.CFG]! The extension [-a] can also be transferred to the configuration file.

C:\ACSUpdate [*.cfg] [-a]

Content of the configuration file

; local PowerPC master, axes 0,1,2,3 PPC/AXIS0 system.s axis0.cpf PPC/AXIS1 system.s axis1.cpf PPC/AXIS2 system.s axis2.cpf PPC/AXIS3 system.s axis3.cpf

; PPC master in network, axes 0,1 Remote_PPC/AXIS0 system.s axis4.cpf Remote_PPC/AXIS1 system.s axis5.cpf

; ACS controller at serial interface in network Remote_ACS system.s axis6.cpf

Example

Implement the above configuration file:

C:\ACSUpdate ACSConfig.cfg

13.1.7 Version and assistance

C:\ACSUpdate $-V$	displays the current version of the controller software.
C:\ACSUpdate -?	displays a brief help screen.

13.1.8 Updates with a laptop

Prerequisites:

- INCO server must be in operation
- 24V supply for INFO-ACSr
- Serial target must be registered
- Important Notes
- ACS-Show or ACSUpdate.exe

To burn flash PROM updates to the controller with a laptop, please see sections:

```
"3.3 Laptop installation"
"4.2 Starting ACS-Show"
"4.8.1 Loading software and parameters"
```

or use the console programme "ACSUpdate.exe". To carry out an update, all the controller INFO-ACSr needs is a 24V supply and the serial connection to the laptop. An active link (i.e. "Trans.exe" implemented) is not required for a serial connection.

Important notes

The following sequence must be followed when connecting a laptop computer to the controller's serial interface:

- 1. Remove the mains power supply from the laptop, so that it is only being supplied with power by the battery.
- 2. Connect the INFO-ACSr and the laptop using the corresponding serial cable.
- 3. Reconnect the mains power supply.

Grund: Due to the galvanic isolation of the transformer, the laptop supply is increased to a potential of 110V (provided the laptop is supplied by a 230V network). As in the case of standard D-SUB plugs it cannot be guaranteed that the shielding will come into contact before the signal cables, there is a risk that the potential equalisation will take place via the signal ground cable. This will lead to destruction of the relevant SIO channel.

13.2 Emergency system

If an error occurs when burning the motor parameters and the flash prom is destroyed, the drive can still be started within the emergency system.

In order to be able to start the drive in the emergency system, a short-circuit plug must be connected to the serial interface (front plate). Flash PROM burning is supported in the emergency system.

Connections:	Signals Pin	SAC2/3 D-SUB 9-pol.	SAC3x3 RJ-45
	RxD, TxD	2, 3	1, 2
	DSR, DTR	6, 4	3, 4

Once the controller has been started, the short-circuit plug can be removed and the serial cable plugged back into the PC.

14 Trouble Shooting

14.1 INFO-link problems

Link problems must be solved first. The error counter must not count upwards. See light quantities for the measuring unit "INFO-Mess".

Link problems must be solved first. The error counter must not count upwards. See light quantities for the measuring unit "INFO-Mess".

14.2 Problems with analogue encoders: SinCos, Resolver

If you have problems with analogue feedback systems, you will find more information here:

Section:

3.5 Resolver

3.6 SinCos

3.7 Checking the sine cosine / resolver level

14.3 Soiling

Fans must be equipped with a dust filter. Dirt and moisture can lead to short-circuiting in the card!

14.4 Supply

14.4.1 Intermediate circuit voltage

Fig. 71: Intermediate circuit

The current (yellow) decreases even though the position error is increasing. The difference between the target (green) and actual (blue) speed of rotation also increases.

Error: The intermediate circuit voltage is too small.

Causes

- Too many controllers on one mains supply
- Motor overloaded
- Supply voltage (230VAC, 400VAC) too small

14.4.2 Voltage dips

The phase recognition may be engaged if an individual phase dips too considerably. In order to remedy this, the flag No_PhaseFailure can be set to 1. This means that phase recognition is completely switched off.

Path in Inco-Tree for the resolver: Ctrl.MotorConfig.Power.Supply.Flag

14.4.3 Supply to MAX board

Fig. 72: Supply to MAX board

The supply to the motor (+V_MOT) of the MAX2/4 board is too low. The minimum supply voltage is +15V; in the example above, the supply is +12V.

14.5 Last

Fig. 73: Last

The maximum current has been reached. The entire path is driven at maximum current.

Error: The controller is at full capacity.

In the case of the cursor position, the positioning error is approx. 270 increments. The maximum permissible amount is 250 error increments. The actual speed deviates considerably from the target speed. The motor can no longer be controlled in this state!

The controller software limits the positioning error to 250 increments.

14.6 PID-Parameter

Fig. 74: PID-Parameter

The PID parameters for "forwards" are not optimally set.

14.7 Disruptions

Disruptions on the resolver cable. ± 3 increments positioning errors cannot be generated by an active current (I_Torque) of less than 100mA. Please note the wiring notes in section 2.3 "Wiring" and in the wiring guidelines.

Fig. 76: Disruptions

14.8 Lead values

The lead value phySpeed has been selected far too high. The actual speed is 40 rpm greater than the target speed. The controller is no longer able to compensate for the large phy. The integrator Pos Err Int (purple) and the Pos Err (grey) are at their maximum.

Fig. 77: Lead values

14.9 Standardisation errors

In the INFO-link configuration, the speed of rotation at 10V must be given. In the servo controller, you must also specify the speed of rotation at 10V. If this standardisation is not correct, the control behaviour will not be as it should. If there is too great a difference in the standardisation, it will not be possible for the axis to move, i.e. it will go into following error or overcurrent.

Standardisation errors can be recognised by means of the curve "target speed" or "Req_Speed" (green curve). If the fieldbus master needs to adjust the target speed during travel, the standardisation is not correct.

Fig. 78: Standardisation errors

14.10 Incorrect Ke

The value for the Ke is set too high. When braking, the motor therefore receives too little voltage and cannot brake correctly.

See section 7.12 "Fine-tuning of Ke, Rs and Ls"

Fig. 79: Incorrect Ke; recording with speed waves

Fig. 80: Incorrect Ke; recording with active current-idle current-integral Image on left: incorrect Ke, image on right: correct Ke

14.11 Incorrect resolver offset

The resolver offset is set incorrectly. This manifests itself in the fact that the axis cannot travel at full speed. If the resolver offset is incorrect, the idle voltage is calculated incorrectly and the controller goes into error with "Imax received".

See section 10.16.3 "Adjusting the resolver offset"

Fig. 81: Incorrect resolver offset; recording with voltage waves Image on left: incorrect, image on right: correct resolver offset

Fig. 82: Incorrect resolver offset; recording with speed waves Image on left: incorrect, image on right: correct resolver offset

Fig. 83: Incorrect resolver offset; recording with speed waves Image on left: incorrect, image on right: correct Ke

Fig. 84: Incorrect resolver offset, speed waves

15 Further documentation

Drive-Inbetriebnahme-Manual.pdf Indel-Safety-Manual.pdf Hardware-Manual-Motion-Boards.pdf Hardware-Manual-SAC3.pdf Verdrahtungsrichtlinie.pdf Aufbaurichtlinie.pdf

16 List of figures

Fig. 1: INIX Motion	8
Fig. 2: Variables logger	9
Fig. 3: Loading firmware, motor/controller configuration	.11
Fig. 4: Burning and saving motor configuration parameters	.12
Fig. 5: Saving and burning motor configuration parameters	.13
Fig. 6: Test-Modi.	.15
Fig. 7: INIX Motion	.16
Fig. 8: Firmware version in the motion tool	.17
Fig. 9: Firmware version in Inco-Explorer	.17
Fig. 10: Absolute encoder configuration	.19
Fig. 11: Actual values, absolute encoder	.20
Fig. 12: Absolute encoder error. Endat	.21
Fig. 13: Absolute encoder error. Hiperface	.22
Fig. 14: Absolute error SSI	23
Fig. 15: Encoder	.23
Fig. 16: Actual values encoder	24
Fig. 17: Resolver	25
Fig. 18: Actual values resolver	.25
Fig. 10: Actual values, resolver	.20
Fig. 20: Actual values SinCos	.20
Fig. 20. Actual values, Sincos	.21
Fig. 21. Sinces	.20
Fig. 22: Auto-commutation, UV w pulse	.30
Fig. 23: Auto-commutation Two-Phase Stepper	.31
Fig. 24: Flag not_Unwind not set	.33
Fig. 25: Flag not_Unwind_set	.33
Fig. 20: Hall sensor commutation	.34
Fig. 2/: Wiring with non-inverted inputs	.35
Fig. 28: Wiring with inverted inputs	.35
Fig. 29: Hall sensor sequence, standard direction of rotation CCW	.37
Fig. 30: Hall sensor sequence, standard direction of rotation CW	.37
Fig. 31: Actual values, auto-commutation UVW	.39
Fig. 32: Actual values, 360° commutation	.39
Fig. 33: Current controller	.40
Fig. 34: Extern Enable	.43
Fig. 35: Actual values, external enabler	.45
Fig. 36: Motor Field Feedback	.46
Fig. 37: Position Control	.47
Fig. 38: GinLink	.48
Fig. 39: Motor	.50
Fig. 40: Trapezoid controller	.55
Fig. 41: Position controller	.56
Fig. 42: Power Supply	.58
Fig. 43: Average Filter	.59
Fig. 44: Observer	.59
Fig. 45: Actual hardware values	.60
Fig. 46: Example: STO, locked safety door	.65
Fig. 47: GinLink configuration	.66
Fig. 48: Move commands	.70
Fig. 49: ACS-Show	.73

Fig. 50: Actual values, resolver	83
Fig. 51: Position of the axis	84
Fig. 52: Feld-Mode	86
Fig. 53: Calculating the current controller	88
Fig. 54: Critical amplification kP crit	98
Fig. 55: Critical amplification kP crit too high	98
Fig. 56: First version of the PID parameters	99
Fig. 57: kP was increased until the current and following error vibrate again	100
Fig. 58: Effect of the kP component	110
Fig. 59: Effect of the kI component	110
Fig. 60: Effect of the kD component	111
Fig. 61: Effect of the kd component	111
Fig. 62: Low-pass filter -6dB amplification	113
Fig. 63: Low-pass filter 6dB amplification	113
Fig. 64: Example: low-pass filter with 6dB amplification at 210Hz	113
Fig. 65: Notch filter -6dB amplification	114
Fig. 66: Notch filter 6dB amplification	114
Fig. 67: Two-Load Filter Güte=3	114
Fig. 68: Low-pass filter 2nd order	115
Fig. 69: Average Filter	116
Fig. 70: Soiling	124
Fig. 71: Intermediate circuit	125
Fig. 72: Supply to MAX board	126
Fig. 73: Last	127
Fig. 74: PID-Parameter	128
Fig. 75: Disruptions	129
Fig. 76: Disruptions	129
Fig. 77: Lead values	130
Fig. 78: Standardisation errors	131
Fig. 79: Incorrect Ke; recording with speed waves	132
Fig. 80: Incorrect Ke; recording with active current-idle current-integral Image on left:	
incorrect Ke, image on right: correct Ke	132
Fig. 81: Incorrect resolver offset; recording with voltage waves Image on left: incorrect,	
image on right: correct resolver offset	133
Fig. 82: Incorrect resolver offset; recording with speed waves Image on left: incorrect, im	age
on right: correct resolver offset	133
Fig. 83: Incorrect resolver offset; recording with speed waves Image on left: incorrect, im	age
on right: correct Ke	134
Fig. 84: Incorrect resolver offset, speed waves	134

17 Document status

Disclaimer

No guarantee is made for the correctness or completeness of the information provided. Subject to technical changes.

File-Hi	istory	
1.20	29.04.2011	Changes to the motor configuration file for GinLink axes, block commutation for Maxon motors Formula for KTY temperature sensors. Ext En flag short-circuit
1.21	09.05.2011	Block commutation for Maxon motors expanded, I2t expanded
1.22	10.05.2011	Actual hardware values
1.23	20.05.2011	i2t-Regelung max Motor-Temp.
1.24	21.07.2011	Switch-off sequence with STO and braking ramp
1.25	10.09.2011	New images
1.26	26.09.2011	Procedure for STO
1.27	27.09.2011	Various small adaptations
1.28	11.10.2011	Switching of PID parameters for position controller
1.29	27.04.2012	Burning system software with ZIP file (GinLink), Document status section added
		Standard assignment of feedback channels on GinLink
1.30	27.04.2012	Configuration of incremental encoder at SinCos interface
		Beschreibung dlq_dt_corr Flag
1.31	27.04.2012	DeadTime configuration in IMD added, IBN stepper motor expanded
1.32	20.06.2012	Enable bits for GinLink declared
1.33	21.09.2012	Section 10.11.2.1, Auto-commutation with Hiperface, added
1.34	17.04.2013	General expansion of section 10. Now with cross-references to more detailed information in other sections. Can now be used as step-by-step instructions
		Description of the asym are flag
		Section 3.15 expanded. Controller frequency can now be configured in the motor configuration
		Section 5.2 expanded with a description of the Motor dt2 file.
		New section 1.2 Overview of the document
		Description of 12t expanded, now solit into the parameters 12t up run and 12t up halt.
		Section 11.4 expanded. Phase gain in the lower frequency range by means of a low-pass with pos. Gain
1.35	22.04.2013	Div. small details adjusted. Div. spelling errors corrected.
1.36	26.04.2013	Section 3.14.1 Motor configuration adapted
	-	Section 3.16.1 Description of the Asym acc flag corrected
1.36	21.11.2013	Translation Commissioning Manual from German to English

