

GIN-SAC4xX FS

Anwenderhandbuch

Revision: 2.1

Datum: 31.07.2025 Sprache: Deutsch

Ausgabe: Originalbetriebsanleitung

Inhaltsverzeichnis

1.	•	Allgemein	11
	1.1.	Über dieses Handbuch	11
	1.2.	Über die Indel Servo Drives der Serie GIN-SAC4xX mit Option FS	11
	1.3.	Vertrieb und Service	11
	1.3.1.	Hersteller	11
	1.3.2.	Support	11
	1.4.	Disclaimer	11
	1.5.	Copyright	12
	1.6.	Dokumentation Versionen	13
	1.7.	Verwendete Begriffe	16
	1.8.	Verwendete Symbole	18
	1.9.	Verwendete Formate	18
	1.10.	Verwendete Einheiten	19
	1.11.	Verwendete Präfixe	19
2.		Sicherheit	20
	2.1.	Eingangskontrolle durch den Anwender	20
	2.2.	Sicherheitshinweise	20
	2.2.1.	Qualifiziertes Personal	20
	2.2.2.	Dokumentation	20
	2.2.3.	ESD- Schutz	20
	2.2.4.	Schutz gegen berühren elektrischer Teile	21
	2.2.5.	Ausschalten	21
	2.2.6.	Hochspannungsprüfung, Isolationswiderstandsprüfung	21
	2.2.7.	FI-Schutzschalter	21
	2.2.8.	Öffnen des Gerätes	21
	2.2.9.	Safe Torque Off	22
	2.3.	Sicherheitstechnische Auflagen	22
	2.3.1.	Gefahrenanalyse	22
	2.3.2.	Nachlaufen	22
	2.3.3.	Bremswiderstand / Ballastwiderstand	22
	2.3.4.	Restenergie im Zwischenkreis	23
	2.3.5.	Heisse Oberfläche	23
	2.3.6.	Trennende Schutzeinrichtungen	23
	2.3.7.	Schutz vor gefährlichen Bewegungen	24
	2.3.8.	Hängende Lasten	24
	2.3.9.	Spannungsausfall der Logikspeisung	24

2.3.10.	Spannungsausfall der Netzspeisung	
2.3.11.	EMV	24
2.3.12.	Inbetriebnahme	25
2.3.13.	Betriebsdauer	25
2.3.14.	Verantwortlichkeit	25
2.3.15.	Defekte Drives	25
2.4.	Bestimmungsgemässe Verwendung	27
3.	Handhabung	28
3.1.	Lagerung	28
3.2.	Wartung	28
3.3.	Reparatur-Dienst	28
3.4.	Entsorgung	28
4.	Produktidentifizierung	29
4.1.	Lieferumfang	31
4.1.1.	GIN-SAC4x4	31
4.1.2.	GIN-SAC4x3	31
4.1.3.	GIN-SAC4x2	32
4.1.4.	GIN-SAC4x1	32
4.2.	Optionales Zubehör	33
4.3.	Typenschilder	34
4.3.1.	GIN-SAC4x4 5A/230V/PRO/FS und GIN-SAC4x4 5A/230V/FS	34
4.3.2.	GIN-SAC4x4 5A/400V/PRO/FS und GIN-SAC4x4 5A/400V/FS	34
4.3.3.	GIN-SAC4x3 5A/230V/PRO/FS und GIN-SAC4x3 5A/230V/FS	35
4.3.4.	GIN-SAC4x3 5A/400V/PRO/FS und GIN-SAC4x3 5A/400V/FS	35
4.3.5.	GIN-SAC4x2 5A/230V/PRO/FS und GIN-SAC4x2 5A/230V/FS	36
4.3.6.	GIN-SAC4x2 5A/400V/PRO/FS und GIN-SAC4x2 5A/400V/FS	36
4.3.7.	GIN-SAC4x1 5A/230V/PRO/FS und GIN-SAC4x1 5A/230V/FS	37
4.3.8.	GIN-SAC4x1 5A/400V/PRO/FS und GIN-SAC4x1 5A/400V/FS	37
5.	Sicherheitstechnik	38
5.1.	Sicherheitsmodule Safe-AxControl und Safe-AxMonitor	38
5.1.1.	Parameter	38
5.2.	Ruhestromprinzip	38
5.3.	Sichere Impulssperre	39
5.3.1.	Maximale Bewegung im Fehlerfall	39
5.4.	Sicherer, zweikanaliger, isolierter Eingang: Sicherer Eingang 0 (STO)	40
5.4.1.	Kennwerte	40
5.4.2.	Anschluss an einen Not-Halt-Kreis	40

5.4.3.	Anschluss an eine übergeordnete Sicherheitssteuerung	42
5.4.4.	Parameter	42
5.5.	Sicherere, zweikanalige Eingänge 1 - 3	43
5.5.1.	Kennwerte	43
5.5.2.	Anschluss von zweikanaligen, kontaktbehafteten Sensoren	44
5.5.3.	Anschluss an einen sicheren, zweikanaligen Ausgang	45
5.5.4.	Verwendung der Pulssignale für mehrere Eingänge	46
5.5.5.	Fehlererkennung durch das Sicherheitsmodul	47
5.5.6.	Parameter	47
5.6.	Sicherer, zweikanaliger Ausgang	48
5.6.1.	Kennwerte	48
5.6.2.	Anschluss an einen isolierten, sicheren Eingang	49
5.6.3.	Anschluss an einen nicht-isolierten, sicheren Eingang	49
5.6.4.	Anschluss an eine sichere Bremsenansteuerung	49
5.6.5.	Fehlererkennung durch das Sicherheitsmodul	50
5.6.6.	Parameter	51
5.7.	Nicht sicherer, einkanaliger, isolierter Ausgang	51
5.7.1.	Kennwerte	51
5.8.	Ringschaltung mehrerer GIN-SAC4xX FS	52
5.8.1.	Parameter	53
5.9.	Sichere Geberauswertung und Geberüberwachung	54
5.9.1.	Integration in die Sicherheitskette	54
5.9.2.	Fehlererkennung des GIN-SAC4xX FS bei Anschluss von Resolvern	55
5.9.3.	Anforderungen an die Verwendung von Resolvern	57
5.9.4.	Kennwerte der sicheren Auswertung von Resolvern	57
5.9.5.	Fehlererkennung des GIN-SAC4xX FS bei Anschluss von Sin/Cos-Gebern	58
5.9.6.	Anforderungen an die Verwendung von Sin/Cos-Drehgebern	60
5.9.7.	Anforderungen an die Verwendung von Sin/Cos-Lineargebern	61
5.9.8.	Kennwerte der sicheren Auswertung von Sin/Cos-Gebern	62
5.9.9.	Berechnung der Grenzwerte der Signalstärke	64
5.9.10.	Skalierung des Messsystems	65
5.9.11.	Parameter	66
5.10.	Implementierte Sicherheitsunterfunktionen	67
5.10.1.	STO: Safe torque off	68
5.10.2.	SOS: Safe operating stop	
5.10.3.	SS1-t: Safe stop 1 Typ C (Zeitverzögert)	70
5.10.4.	SS2-t: Safe stop 2 Typ C (Zeitverzögert)	71
5.10.5.	SLS: Safely Limited Speed	72

737475
74 74
74
75
75
75
75
75
75
75
75
76
76
76
76
77
77
77
77
78
78
78
78
79
79
79
80
80
81
81
82
87
88
88
91
91

6.2.2.	Anmeldung	91
6.2.3.	Öffnen der Systemtopologiedatei	92
6.2.4.	Parametrierung	93
6.2.5.	Zusatzinformation	94
6.2.6.	Konfigurationsdatei erstellen	94
6.2.7.	Archivierung der sicheren Konfigurationsdateien	95
6.3.	Laden und Verifizierung der sicheren Konfiguration	96
6.3.1.	Voraussetzung	96
6.3.2.	Verbinden zum INCOServer V	96
6.3.3.	Anmeldung	96
6.3.4.	Dashboard Commissioning auswählen	97
6.3.5.	Auswahl des Systems	97
6.3.6.	Laden der Konfiguration zur Verifikation	97
6.3.7.	Verifikation der Konfiguration	99
6.3.8.	Verifikation der Sicherheitsunterfunktionen	101
6.3.9.	Permanentes Laden der Sicherheitskonfiguration	103
6.3.10.	Dekonfiguration von Sicherheitsmodulen	104
6.3.11.	Ereignishistorie auf dem INCOServer V	105
6.3.12.	Konfigurationshistorie auf dem Sicherheitsmodul	105
6.3.13.	Austausch des Drives	105
6.3.14.	Austausch des Feldbus-Masters	105
6.3.15.	Änderung der Konfiguration	106
7.	Integration in das funktionale System	107
7.1.	Stillsetzen der Achsen bei Funktion SS1-t und SS2-t	107
7.2.	Quittierung von STO-Anforderungen	107
7.3.	Reset der Sicherheitsmodule	108
8.	Technische Beschreibung	109
8.1.	SAC4xX Option PRO	109
8.2.	Options-Drehschalter	109
8.3.	Technische Daten	110
8.3.1.	Allgemein	110
8.3.1.1	Ableitstrom	110
8.3.2.	Netzanschluss und Zwischenkreis	111
8.3.3.	Nennströme Endstufen	112
8.3.4.	Logikspeisung	114
8.3.5.	Motor	114
8.3.6.	Feedbacks	115

8.3.6.1	SinCos	115
8.3.6.2	Resolver	115
8.3.6.3	Inkrementalgeber	116
8.3.6.4	Absolutwert Feedback	116
8.3.7.	Digitale IO's	117
8.4.	Umgebungsbedingungen	118
8.5.	Bemerkungen zum US-Markt	118
9.	Elektrische Installation	119
9.1.	Hinweise	119
9.2.	Steckerbelegung SAC4xX	120
9.2.1.	GIN-SAC4x4 Übersicht	120
9.2.2.	GIN-SAC4x3 Übersicht	121
9.2.3.	GIN-SAC4x2 Übersicht	122
9.2.4.	GIN-SAC4x1 Übersicht	123
9.2.5.	Logikversorgung / Digitale IOs	124
9.2.6.	Netzanschluss	124
9.2.7.	Motoranschluss	124
9.2.8.	Zwischenkreisspannung	125
9.2.9.	Ballastwiderstand	125
9.2.10.	Feedback Schnittstellen	125
9.2.11.	Safety	126
9.3.	Motorenanschluss	127
9.3.1.	3-Phasen Motor an einer Endstufe	127
9.3.2.	3-Phasen Motor an zwei parallelen Endstufen	127
9.3.3.	3-Phasen Motor an drei parallelen Endstufen	128
9.3.4.	DC-Motor an einer Endstufe	128
9.4.	Netzanschluss	129
9.5.	Zwischenkreis	130
9.6.	Logikspeisung	130
9.7.	Standard Digitale Ein- und Ausgänge	131
9.7.1.	Eingänge	131
9.7.2.	Ausgänge	131
9.8.	Sichere digitale Ein- und Ausgänge	132
9.9.	Externer Bremswiderstand, resp. Ballastwiderstand	132
9.10.	Feedbacks	133
9.10.1.	SinCos Feedback	133
9.10.2.	Resolver Feedback	134
9.10.3.	Inkrementalgeber Feedback	135

11.		Fehleranalyse	154
10.	6.2.	Abmessung	153
	6.1.	Montage	
10.	.6.	GIN-SAC4x1	152
10.	5.2.	Abmessung	151
10.	5.1.	Montage	150
10.	.5.	GIN-SAC4x2	150
10.	4.2.	Abmessung	149
10.	4.1.	Montage	148
10.	.4.	GIN-SAC4x3	148
10.	3.2.	Abmessung	147
10.	3.1.	Montage	146
10.	.3.	GIN-SAC4x4	146
10.	.2.	Montagevorschriften	145
10.	.1.	Hinweise	145
10.		Mechanische Installation	145
9.1	.3.2.	Ballastwiderstand resp. Bremswiderstand	144
	3.1.	I ² t Abschaltung	
9.1		Motorüberlastschutz	
	2.6.	Schutzleiteranschluss	
	2.5.	Potentialausgleich	
	2.4.	Kabelführung von SinCos-, Inkremental- und Resolver-Leitungen	
	.2.3.	Kabelführung der sicheren Ein- und Ausgänge	
	2.2.	Kabelführung von Motorleitungen	
	2.1.	Leiterquerschnitte SAC4	
9.1		Verdrahtung	
	1.2.	Netzanschluss	
	1.1.	Logikspeisung	
9.1		Spannungsversorgung	
9.1	0.5.	Temperatur Sensoren	
9.1	0.4.3	SSI / Biss C / EnDat 2.2	
9.1	0.4.2	EnDat 2.1	
9.1	0.4.1	Hiperface	
9.1	0.4.	Absolutwert Feedbacks	
9.1	0.3.3	Anschluss von Single-Ended Inkrementalgeber	137
9.1	0.3.2	Anschluss an SinCos Interface	136
9.1	0.3.1	Anschluss an Absolutwert Interface	135

13.	Normen	160
12.2.	CB Test Zertifikat	158
12.1.	EG-Konformitätserklärung für GIN-SAC4xX FS	157
12.	Weiterführende Dokumente	157
11.2.	Fehlertabelle	155
11.1.	Status-LED	154

1. Allgemein

1.1. Über dieses Handbuch

Dieses Anwenderhandbuch beschreibt die Indel Servo Drives der Serie **GIN-SAC4xX** mit Option **FS** (Functional **S**afety). Es handelt sich bei diesem Dokument um die Originalbetriebsanleitung.

1.2. Über die Indel Servo Drives der Serie GIN-SAC4xX mit Option FS

Die Indel Servo Drives der Serie **GIN-SAC4xX** mit Option **FS** (**F**unctional **S**afety) dienen der geregelten Ansteuerung von bis zu 4 Servomotoren mit sicherer Überwachung von Resolvern oder Sin/Cos-Gebern. Zusätzlich zur Motorenansteuerung Stehen die Sicherheitsunterfunktionen STO, SS1-t, SS2-t, SOS und SLS zur Verfügung.

Indel Servo Drives sind für den industriellen Einsatz entwickelt worden, für den Einsatz sind die entsprechenden Normen und Richtlinien zu beachten.

1.3. Vertrieb und Service

1.3.1. Hersteller

Indel AG Tüfiwis 26 CH-8332 Russikon Switzerland

info@indel.ch www.indel.ch

Tel.: +41 44 956 20 00

1.3.2. Support

Indel AG bietet Ihnen einen umfangreichen technischen Support:

- · Engineering für Hardware und Software
- · Weltweiter Support via Team Viewer
- · Inbetriebnahme von Steuerungen und Antrieben vor Ort

1.4. Disclaimer

Die Dokumentation wurde nach bestem Wissen und Gewissen erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt und verbessert. Die Dokumentation ist deshalb niemals als vollständig zu betrachten. Sämtliche Angaben in der Dokumentation sind ohne Gewähr. Wir behalten uns das Recht vor, jederzeit und ohne Ankündigung Änderungen vorzunehmen. Auf Basis dieser Dokumentation können keine Ansprüche auf Änderungen bereits gelieferter Produkte gemacht werden.

1.5. Copyright

© Indel AG

Weitergabe sowie Vervielfältigung dieses Dokuments sind, soweit nicht ausdrücklich von Indel gestattet, verboten.

1.6. **Dokumentation Versionen**

Version	Datum	Autor	Kommentar
Rev 0.1	25.09.2016	Thomas Jericke	Erstellung des Dokuments auf Basis des GIN-SAC4xX
			Manuals.
Rev 0.2	30.09.2016	Thomas Jericke	Korrekturen nach Review
Rev 0.3	03.10.2016	Thomas Jericke	Korrekturen nach 2. Review
Rev 0.4	18.11.2016	Thomas Jericke	 Unterkapitel Berechnung der Grenzwerte der Signalstärke hinzugefügt. Logikspeisung von 24 V -15% +25% korrigiert auf 24 V -15% +20% Hinweis zu Errorcodes der sicheren Eingänge hinzugefügt. Hinweis zur Verwendung von Testsignalen für STO bei Ringschaltung hinzugefügt. Unterkapitel zum dekonfigurieren von Modulen hinzugefügt. Versionsnummern der benötigten Software hinzugefügt. Hinweis zur Überprüfung der Funktionen SS1 und SS2 nach Änderungen am funktionalen System (z.B. Updates).
Rev 0.5	22.12.2016	Thomas Jericke	 Schema Montagevorschriften durch massstabgetreue Version ersetzt. EG-Konformitätserklärung hinzugefügt. Hinweise zu tiefen SOS Limiten hinzugefügt.
Rev 0.6	15.02.2017	Thomas Jericke	 Einleitende Beschreibung des Gerätes hinzugefügt. Sicherheitsfunktionen in Sicherheitsunterfunktionen umbenannt, SS1-t und SS2-t eingeführt nach neuer Version von 61800-5-2 (2016). Screenshot Verifikation aktualisiert. Warnung vor heissen Oberflächen hinzugefügt. Überspannungskategorie von II auf III erhöht. Normen aktualisiert und ergänzt. Error-Liste aktualisiert.
Rev 0.7	28.02.2017	Thomas Jericke	 Fehler AllSchedTestIncomplete in Fehlercode pro Klasse aufgeteilt.

Version	Datum	Autor	Kommentar
Rev 0.8	22.03.2017	Thomas Jericke	 Diverse Rechtschreibfehler korrigiert. Kapitel 2.3.14 «Schutz gegen Umgehen auf einfache Weise» entfernt. Sicherheitshinweise zur Verwendung der Ringschaltung hinzugefügt. Sicherheitshinweis hinzugefügt, dass Trägersignal des GIN-SAC4xX für Resolver verwendet werden müssen. Anforderungen an den Einsatz von Resolvern bzw. Sin/Cos-Gebern korrigiert und ergänzt. Diagramme für Sicherheitsunterfunktionen STO, SS1-t und SS2-t hinzugefügt. Angabe des PFD-Wertes entfernt. Hinweise zu DC-Motoren korrigiert und ergänzt.
Rev 0.9	13.04.2017	Thomas Jericke	 Anforderung das vor Inbetriebnahme von Gebern die Verdrahtung überprüft werden muss hinzugefügt. Hinweis zur Verwendung der Reaktionszeiten von Sicherheitsunterfunktionen hinzugefügt. Zusätzlicher Hinweis zur Verwendung von Getrieben und Riemen hinzugefügt. Hinweis zum permanenten Laden der Sicherheitsfunktion hinzugefügt. Text und Hinweise zur STO-Quittierung hinzugefügt. Neue Fehler-Codes der STO-Quittierung hinzugefügt. Korrekte Version des INCOServer V angegeben. Zusätzlicher Hinweis zur ausschliesslichen Verwendung von GIN-SAC4xX FS in Schaltschränken mit Schutzart IP54.
Rev 1.0	12.05.2017	Thomas Jericke	 Unterschriebene EG-Konformitätserklärung hinzugefügt. Hinweise zur Beschleunigungsüberwachung hinzugefügt. Freigabe des Dokuments: Verweis «Entwurf» entfernt.
Rev 1.1	15.06.2017	Max Bleuler	 Altes Indel Logo durch neues Indel Logo ersetzt Neu-Verlinkung der URLs in Kapitel 2.3.11
Rev 1.2	21.08.2017	Thomas Jericke	 Reihenfolge der Eingänge in den Anschlussbeispielen in den Kapiteln 5.5.4 und 5.8 korrigiert. Stern-Markierung in Kapitel 5.10 von SS1-t auf SLS korrigiert. Erklärung von Helm Symbol des Indel Axis Tool in Kapitel 6.3.8 hinzugefügt. Verweis auf Indel Online-Dokumentation der Softwarekonfiguration in den Kapiteln 6.3.8 und 7.1 hinzugefügt.

Version	Datum	Autor	Kommentar
Rev 1.3	07.10.2020	Max Bleuler	Update EG-Konformitätserklärung in Kapitel 12.1
Rev 1.4	18.11.2020	Simon Bärtschi	 12.1 Konvertierung des Dokuments in MS Word Titelblatt mit Bild aufgehübscht Kapitel 4: SAC4x2 Typen ergänzt Kapitel 0: Typenschilder mit neuem INDEL Logo aktualisiert Kapitel 9.2: Ansichten Gehäusefronten aktualisiert Kapitel 2.2.7: Fehlerstromschutzschalter vom STO Gerät übernommen Kapitel 8.3.5.4: Absolutwertgeber BissC und EnDat 2.2 support ergänzt Kapitel 5.7 nicht sicherer Ausgangs Kontakt. Zustände geschlossen/offen statt Hoch/tief Kapitel 8.3.7: Standard Digitale Ein-/ Ausgänge als General IO nutzbar Kapitel Fehler! Verweisquelle konnte nicht gefunden werden.: CB Zertifikat ergänzt Rechtschreibung verbessert Kapitel 4.2 Optionales Zubehör eingeführt Kapitel 8.5 Bemerkungen zum US-Markt
Rev 1.5	13.01.2020	Thomas Jericke	 Rechtschreibefehler und Einheiten mit Mikro (u zu μ) korrigiert.
Rev 1.6	10.09.2021	Max Bleuler	 Update EG-Konformitätserklärung in Kapitel 12.1
Rev 1.6	15.09.2021	Simon Bärtschi	 Sincos Auswertung von 10 Bit auf 12 Bit korrigiert Kapitel 8.3.6.1, 9.10.1, 9.10.4.1, 9.10.4.2 Safety-Eingang: Minimale Spannung Eingang (hoch) von 11V auf 16V korrigiert. Kapitel 5.4.1, 5.5.1
Rev 1.7	24.05.2022	Simon Bärtschi	 Maximaler Kurzschlussstrom des Netzan- schlusses ergänzt in Kapitel 8.3.2
Rev. 1.8	30.09.2022	Max Bleuler	· Update EG-Konformitätserklärung in Kapitel 12.1
Rev. 1.9	14.09.2023	Michael Fischer	· Update EG-Konformitätserklärung in Kapitel 12.1
Rev. 2.0	15.08.2024 31.07.2025	Thomas Jericke Thomas Jericke	 Kapitel 5.18: Fehlerbeschreibung MoniSin-CosAccelerationTooLarge ergänzt, der wahrscheinliche Grund für den Fehler kann auch hartes Abbremsen sein. Kapitel 4.3: Typenschilder aktualisiert. Kapitel 12.1:Kopie der EG-Konformitätserklärung durch Link ersetzt. Kapitel 4.3: Typenschilder aktualisiert.
VGA. 5.1	51.01.2025		 Kapitel 4.3: Typenschilder aktualisiert. Kapitel 13: Normen aktualisiert.

1.7. Verwendete Begriffe

Begriff	Bedeutung
DC	Diagnostic Coverage (Diagnose Deckungsgrad)
+DC / -DC	Zwischenkreis Abgriff an den Servo Drives
EMV	Elektromagnetische Verträglichkeit
ESD	Electrostatic Discharge (Elektronische Entladung)
Feedback	Positionsgeber
Feldbus Master	Master des GinLink Feldbusses
FIT	Failure In Time, 1 FIT = 10 ⁻⁹ Fehler/h
GinLink	Indel Feldbus, 1GBit/s Ethernet basierend
GIN-SAC4xX	Bezeichnung für ganze GIN-SAC4 Serie
GIN-SAC4xX FS	Bezeichnung für ganze GIN-SAC4 Serie mit funktionaler Sicherheit
GIN-SAC4x4 FS	Bezeichnung für GIN-SAC4 mit 4 Endstufen mit funktionaler Sicherheit
GIN-SAC4x3 FS	Bezeichnung für GIN-SAC4 mit 3 Endstufen mit funktionaler Sicherheit
GIN-SAC4x2 FS	Bezeichnung für GIN-SAC4 mit 2 Endstufen mit funktionaler Sicherheit
GIN-SAC4x1 FS	Bezeichnung für GIN-SAC4 mit 1 Endstufe mit funktionaler Sicherheit
Hardware	Elektronik oder Mechanik
IGBT	Insulated Gate Bipolar Transisor (Bipolartransistor mit isolierter Gate-Elektrode)
INCOServer V	Indel Connectivity Server der 5. Generation: Service-Programm welches die Kommunikation zwischen PC und Indel Steuerung verwaltet.
Indel Cockpit	Programm zur Inbetriebnahme, Wartung und Betrieb von Indel Steuerungen
Indel Safety Configu-	Programm zur Erstellung von Sicherheitskonfigurationen
rator	
INOS	Indel Operating System: Betriebssystem der funktionalen Steuerungen von Indel
Interface	Schnittstelle
IP-Adresse	Internet Protokoll Adresse
LAN	Local Area Network (Lokales Netzwerk)
LED	Ligh Emmiting Diode (Leuchtdiode)
Linux	Quelloffenes Betriebssystem
MTTFd	Mean time to dangerous Failure (Mittlere Zeit bis zu einem gefährlichen Ausfall)
OSSD	Output Signal Switching Device (Signalausgang der Schutzeinrichtung)
PC	Personal Computer
PE-Leiter	Erdleiter
PELV	Protected Extra Low Voltage (Schützende Kleinspannung)
PFH	Probability of Failure per Hour (Wahrscheinlichkeit für einen Ausfall pro Stunde)
PFHd	Probability of dangerous Failure per Hour (Wahrscheinlichkeit für einen gefährlichen Ausfall pro Stunde)
PL	Performance Level (nach EN ISO 13849-1)
PWM	Pulsweitenmodulation
RAM	Random Access Memory (Hauptspeicher der Mikrokontroller)
Safe-AxControl	Verbautes Sicherheitsmodul welches STO und Sichere Ein- und Ausgänge umsetzt.

Begriff	Bedeutung
Safe-AxMonitor	Verbautes Sicherheitsmodul welches Achsenüberwachung mit SOS und SLS umsetzt
SELV	Safety Extra Low Voltage (Sicherheitskleinspannung)
SIL	Safety Integrity Level gemäss IEC61508
sin	Sinus
SLS	Safely Limited Speed (Sichere langsame Fahrt)
SS1-t	Safe Stop 1 Typ C (Sicherere Halt 1)
SS2-t	Safe Stop 2 Typ C (Sicherere Halt 2)
STO	Safe Torque Off (Sichere Momentenabschaltung)
Stummschaltung	Keine Überwachung durch Sicherheitsunterfunktion
Software	Programm der Mikrokontroller
SOS	Safe Operation Stop (Sicherer Operativer Halt)
Target	Endpunkt der Kommunikation im Indel Cockpit
URL	Uniform Resource Locator (einheitlicher Ressourcenzeiger)
Windows	Betriebssystem von Microsoft®

1.8. Verwendete Symbole

GEFAHR	Gefahr Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung zu Tod oder unmittelbaren schweren Verletzungen führen können
GEFAHR	Gefahr durch Elektrizität Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung zu Personenschaden durch Elektrizität führen können
WARNUNG	Warnung Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung zu schweren Verletzungen oder grossen Sachschäden führen können
ACHTUNG	Achtung Das Symbol kennzeichnet Informationen, welche bei Nichteinhaltung zu Verletzungen oder Sachschäden führen können
B	Wichtiger Hinweis für den Anwender Das Symbol kennzeichnet wichtige Hinweise für den Benutzer. Alle Hinweise müssen beachtet werden
www.	Hyperlink Kennzeichnet einen Hyperlink auf eine Datei oder Information im Internet
	Verweis Verweis auf ein Dokumentation internes Kapitel

1.9. Verwendete Formate

Als Dezimaltrennzeichen wird im gesamten Dokument der Dezimalpunkt verwendet. Um Verwechslungen zu vermeiden wird für das Tausendertrennzeichen ein Leerzeichen verwendet (ISO 80000-1):

z.B.: 1 009.700 001

 $Hexa dezimal zahlen \ werden \ durch \ ein \ vorangestelltes \ «0x» \ gekennzeichnet:$

z.B.: 0x1EE3

Daten werden im Format tt.mm.jjjj oder jjjj-mm-tt angegeben.

z.B.: 01.09.1974 bzw. 1974-09-01

1.10. Verwendete Einheiten

Es werden folgende Abkürzungen für Einheiten benutzt.

Abkürzung	Bedeutung
٥	Grad (Gradmass)
Α	Ampere
A _{RMS}	Ampere Root Mean Square (Effektivwert Strom)
anno	Jahr
°C	Grad Celsius
F	Farad
g	Erdbeschleunigung (9.8 m/s²)
h	Stunde
Н	Henry
Hz	Hertz
kg	Kilogramm
m	Meter
min	Minute
müM	Meter über Meer
Ω	Ohm
s	Sekunde
V	Volt
V _{AC}	Volt Wechselspannung
V _{DC}	Volt Gleichspannung
W	Watt

1.11. Verwendete Präfixe

Es werden folgende Präfixe für Einheiten benutzt.

Abkürzung	Name	Faktor
М	Mega	1 000 000
k	Kilo	1 000
m	Milli	0.001
μ	Mikro	0.000 001

2. Sicherheit

2.1. Eingangskontrolle durch den Anwender

Nach Eingang der Lieferung und vor jeder Inbetriebnahme ist der GIN-SAC4x4 auf Vollständigkeit und Unversehrtheit zu prüfen. Insbesondere sind folgende Eigenschaften zu überprüfen:

- Vollständigkeit und Korrektheit des Lieferumfangs (siehe Kapitel 4.1)
- Korrekte Typenbezeichnung am Drive (siehe Kapitel 0)
- Unversehrtheit des Gehäuses, der Stecker und Buchsen
- Keine losen Teile oder gelöste Schrauben

Beschädigte Drives oder Drives vom falschen Typ dürfen unter keinen Umständen in Betrieb genommen werden.

Dies kann zu schweren Personen- und Sachschäden führen.

2.2. Sicherheitshinweise

Mit folgenden Sicherheitshinweisen wird kein Anspruch auf Vollständigkeit erhoben. Bei Fragen, Unklarheiten oder Problemen kontaktieren Sie uns bitte.

2.2.1. Qualifiziertes Personal

Alle Arbeiten wie Transport, Installation, Inbetriebnahme und Service dürfen nur durch qualifiziertes Fachpersonal ausgeführt werden. Qualifiziertes Fachpersonal sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen. Nationale und internationale Unfallverhütungsvorschriften und Normen sind zu beachten. Die Sicherheitshinweise, die Angaben zu den Anschlussbedingungen (Typenschild und Dokumentation) und die in den technischen Daten angegebenen Grenzwerte sind vor der Installation und Inbetriebnahme sorgfältig durchzulesen und unbedingt einzuhalten.

2.2.2. **Dokumentation**

Lesen Sie vor Installation und Inbetriebnahme diese Dokumentation sowie Dokumentationen auf die verwiesen werden, vollständig durch. Falsche Handhabung kann zu Personen- oder Sachschaden führen. Halten Sie die technischen Daten, Angaben zu den Anschlussbedingungen sowie Umgebungsbedingungen unbedingt ein.

2.2.3. **ESD- Schutz**

Die Servoverstärker beinhalten elektrostatisch gefährdete Bauelemente, die durch unsachgemässe Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie die Servoverstärker berühren. Vermeiden Sie Kontakt mit hoch isolierenden Stoffen (Kunstfaser, Kunststofffolien, etc.). Legen Sie die Servoverstärker im spannungslosen Zustand auf eine leitfähige Unterlage. Kontakte von Steckverbinder am Drive und an angeschlossenen Kabeln sowie Kontaktzungen an Leiterbahnen nicht berühren.

2.2.4. Schutz gegen berühren elektrischer Teile

Für den Betrieb des Servoverstärkers ist es notwendig, dass bestimmte Teile Spannungen von mehr als 50V_{AC}, also Kleinspannungen führen. Werden solche Teile berührt, kann es zu lebensgefährlichen elektrischen Schlägen kommen. Es besteht die Gefahr von Tod oder schweren gesundheitlichen Schäden.

Vor dem Einschalten eines Drives muss sichergestellt werden, dass das Gerät ordnungsgemäss mit dem PE-Leiter verbunden ist. Die Erdverbindung muss immer angebracht werden, auch wenn der Drive nur kurzzeitig in Betrieb gesetzt wird.

Vor dem Einschalten sind spannungsführende Teile mit mehr als 50 V_{AC} mit geeigneten Massnahmen gegen direktes Berühren abzusichern.

Anschlüsse können auch gefährliche Spannungen führen, wenn sich der Motor nicht dreht. Das Berühren der Anschlüsse in eingeschaltetem Zustand ist deshalb verboten. Vor Arbeiten am Drive ist dieser vom Netz zu trennen und gegen Wiedereinschalten zu sichern.

Bei Berührung von spannungsführenden Teilen (z.B. Klemmen) besteht die Gefahr von Tod oder schweren gesundheitlichen oder materiellen Schäden. Trennen Sie die elektrischen Anschlüsse der Module nie unter Spannung. In ungünstigen Fällen können Lichtbögen entstehen und Personen und Material wie Kontakte schädigen.

2.2.5. Ausschalten

Nach Ausschalten der Netzeinspeisung können Restspannungen während mehreren Minuten anliegen. Messen Sie die Zwischenkreisspannung und warten Sie, bis die Spannung unter 50 V abgesunken ist.

2.2.6. Hochspannungsprüfung, Isolationswiderstandsprüfung

Am Netzanschluss und Motorenanschluss der Drives darf keine Hochspannungsprüfung oder eine Isolationswiderstandsprüfung durchgeführt werden, ansonsten wird der Drive zerstört.

2.2.7. FI-Schutzschalter

Beim Betrieb am 3phasen Netz kann dieses Produkt im Fehlerfall einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produkts nur ein RCD oder RCM vom Typ B zulässig.

Es dürfen nur allstromsensitive FI-Schutzschalter (Typ B) verwendet werden.

2.2.8. Öffnen des Gerätes

Das Öffnen des GIN-SAC4xX FS ist unter keinen Umständen erlaubt. Bei Berührung von spannungsführenden Teilen im GIN-SAC4x4 besteht die Gefahr von Tod oder schweren gesundheitlichen oder materiellen Schäden. Einmal geöffnete GIN-SAC4xX dürfen auch nach dem Zusammenbau nicht mehr in Betrieb genommen werden.

2.2.9. Safe Torque Off

Die Sicherheitsunterfunktion STO wie in Kapitel 5.10.1 beschrieben, ist als sichere Impulssperre ausgeführt.

Das Aktivieren der Sicherheitsunterfunktion ist nicht geeignet um den Drive spannungsfrei zu schalten. Das Aktivieren der Sicherheitsunterfunktion bietet keinen Schutz gegen elektrischen Schlag.

2.3. Sicherheitstechnische Auflagen

Bei der Installation und dem Betrieb von Indel Drives in Anwendungen mit sicherheitsgerichteter Abschaltung des Antriebs nach Stopp-Kategorie 0, 1 oder 2 gemäss EN 60204-1 sowie die Sicherheitsunterfunktionen STO, SS1-t, SS2-t, SOS und SLS nach EN 61800-5-2 und dem fehlersicherem Schutz gegen Wiederanlauf gemäss EN ISO 13849-1 Kat.3/PL d, sind alle Auflagen in diesem Handbuch sowie Auflagen, auf die verwiesen werden zwingend einzuhalten.

2.3.1. **Gefahrenanalyse**

Der Maschinenhersteller muss eine Gefahrenanalyse für die Maschine erstellen und geeignete Massnahmen treffen, sodass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

Es sind auch an anderen Stellen in diesem Dokument Hinweise auf mögliche Gefahren beschreiben. Sämtliche Hinweise auf Gefahren, Warnungen, Vorsichtsmassnahmen und Informationen müssen beachtet werden.

2.3.2. Nachlaufen

Wenn durch das Nachlaufen applikationsabhängig Gefahren entstehen, müssen zusätzliche Schutzmassnahmen (z. B. bewegliche Verdeckungen mit Zuhaltung) getroffen werden, die Gefahrenstelle so lange abdecken, bis keine Gefahr mehr für Personen oder Sachen besteht. Es ist zu berücksichtigen, dass ohne mechanische Bremse oder defekte Bremse ein Nachlaufen des Antriebs möglich ist.

2.3.3. Bremswiderstand / Ballastwiderstand

Der Ballastwiderstand wird von den Indel Servo Drives nicht sicher angesteuert. Ein defekter oder nicht korrekt angeschlossener Ballastwiderstand hat zur Folge, dass der Motor nicht in der erwarteten Zeitspanne stoppt. Dies kann im ungünstigen Fall zu Personen- und Sachschäden führen.

2.3.4. Restenergie im Zwischenkreis

Rest-Energie in den Zwischenkreis-Kondensatoren kann bis zu 10 Minuten nach Abschalten der Energieversorgung (Öffnen des Hauptschützen bzw. Motorschützen) erhalten bleiben. Es ist möglich, mit dieser Rest-Energie den Motor zu bewegen. Dadurch kann es unter Umständen zu Gefahr bringenden Situationen kommen. Werden zusätzliche externe Kondensator-Module verwendet, dauert es entsprechend länger, bis die Zwischenkreis-Kondensatoren entladen sind.

Folgender Warnhinweis ist auf den Drives angebracht.

2.3.5. Heisse Oberfläche

Bei andauernder hoher Belastung aller Endstufen des Geräts können an Stellen des Gehäuses Temperaturen bis zu 80°C erreicht werden.

Folgender Warnhinweis ist auf den Drives angebracht.

2.3.6. Trennende Schutzeinrichtungen

Wird als risikomindernde Massnahme eine trennende Schutzeinrichtung gefordert ist entsprechend der EN ISO 13855 zu ermitteln ob eine zusätzliche Zuhaltung erforderlich ist.

Entsprechend der definierten Sicherheitsunterfunktion ist die Einhaltung der EN ISO 14119 zu berücksichtigen.

2.3.7. Schutz vor gefährlichen Bewegungen

Durch fehlerhafte Ansteuerung von Motoren können ungewollte und gefährliche Bewegungen ausgelöst werden.

- Fehlerhafte Installation
- Fehlerhafte Konstruktion
- Fehlerhafte oder unvollständige Verdrahtung
- Defekte Geräte oder Kabel
- Fehlerhafte Ansteuerung durch die Software

Grundsätzlich ist nach dem Einschalten des Drives mit einer Bewegung des Motors zu rechnen. Ein Schutz von Personen und Maschine kann durch übergeordnete Massnahmen und der korrekten Verwendung der integrierten Sicherheitsunterfunktionen des Drives gewährleistet werden.

Der Bewegungsbereich von Maschinen ist gegen unbeabsichtigten Zutritt von Personen mit geeigneten Massnahmen zu schützen.

Das Entfernen, Überbrücken oder Umgehen von Sicherheitseinrichtungen ist strengstens verboten. Leicht zugängliche Not-Aus Schalter sind in ausreichender Anzahl an der Maschine anzubringen. Es sind die Bestimmungen nach EN ISO 13850 einzuhalten.

2.3.8. Hängende Lasten

Bei hängenden Lasten muss die Festhaltung der Achse mit zusätzlichen Massnahmen sichergestellt werden. Der GIN-SAC4xX FS bietet einen sicheren Ausgang welcher jedoch nicht direkt an eine Haltebremse angeschlossen werden kann, sondern nur als sicheres Eingangssignal für eine Weiterverarbeitung dient. Zur Ansteuerung einer Haltebremse ist eine geeignete Ansteuerungsschaltung zu verwenden. Haltebremsen bieten keinen Schutz beim Abbremsen des Motors.

2.3.9. Spannungsausfall der Logikspeisung

Bei Spannungsausfall der 24 V Logikspeisung am Drive kann der Motor austrudeln. Falls dies nicht zulässig ist, müssen externe Massnahmen ergriffen werden, um ein Austrudeln der Achse zu verhindern.

2.3.10. Spannungsausfall der Netzspeisung

Bei Spannungsausfall der Netzspeisung bzw. der Versorgung für die Motoren kann der Motor austrudeln. Sinkt die Zwischenkreisspannung Ucc unter die konfigurierte Limite Ucc MIN, geht der Servo Drive auf Fehler und die Motoren werden spannungslos geschaltet.

2.3.11. **EMV**

Für EMV-gerechte Verdrahtung siehe weiteres Dokument INDEL-Verdrahtungsrichtline und INDEL-Aufbaurichtlinie sowie sämtliche Verdrahtungs-Hinweise in diesem Dokument.

www. INDEL Verdrahtungs-Richtlinie

(https://www.indel.ch/Downloads-Indel/Further_Documents/EMC/Verdrahtungsrichtlinie.pdf)

www. INDEL Aufbau-Richtlinie

(https://www.indel.ch/Downloads-Indel/Further_Documents/EMC/Aufbaurichtlinie.pdf)

Der Hersteller von Maschinen bzw. Anlagen hat zusätzliche EMV-Schutzmassnahmen zu treffen, falls diese für seine Maschine zutreffende Produktenorm niedrigere Grenzwerte enthält. Bei Maschinen die viele Indel Servo Drives enthalten, können ebenfalls zusätzliche EMV-Schutzmassnahmen erforderlich sein.

Der Regler ist für den Einsatz im Industriebereich vorgesehen. Dem Regler muss am Netzanschluss ein Filter vorgeschalten werden. Siehe auch Kapitel 9.11.2

In einer Wohnumgebung (erste Umgebung) kann dieses Produkt hochfrequente Störungen verursachen welche weitere Entstörmassnahmen erforderlich machen.

2.3.12. Inbetriebnahme

Vor dem Einschalten eines Servo Drives muss sichergestellt werden, dass das Gerät ordnungsgemäss mit dem Erdpotenzial verbunden ist. Die Erdverbindungen müssen in jedem Fall angebracht werden, auch wenn der Drive nur zu Versuchszwecken in Betrieb gesetzt wird.

Steuer- und Leistungsanschlüsse können Spannung führen, auch wenn sich der Motor nicht bewegt. Das Berühren der Anschlüsse in eingeschaltetem Zustand ist verboten. Vor Arbeiten an den Drives sind diese vom Netz zu trennen und gegen wiedereinschalten zu sichern.

Es muss eine dokumentierte Inbetriebnahme und ein Nachweis der Sicherheitsunterfunktionen erfolgen. Für Indel Servo Drive Anwendungen mit sicherheitsgerichteter Abschaltung des Antriebs nach STO (Safe Torque Off), SS1-t (Safe Stop 1 Typ C), SS2-t (Safe Stop 2 Typ C), SOS (Safe Operating Stop) und SLS (Safely Limited Speed) gemäss EN 61800 Teil 5.2 und fehlersicherem Schutz gegen Wiederanlauf gemäss EN ISO 13849 Kat. 3 sind grundsätzlich Inbetriebnahme Prüfungen der Abschalteinrichtung und der korrekten Verdrahtung durchzuführen und zu protokollieren.

2.3.13. Betriebsdauer

Spätestens 15 Jahre nach Auslieferung müssen die Servo Drives vom Hersteller ausgetauscht werden. Bei einem Einsatz länger als 15 Jahre ist der sichere Betrieb nicht mehr gewährleistet. Dies gilt nicht nur für die Betriebszeit, sondern auch für die Stillstand- und Lagerzeit.

Da für GIN-SAC4x4 FS keine Wiederholungsprüfung durchgeführt werden kann, entspricht das Wiederholungsprüfung-Intervall der Betriebsdauer von 15 Jahren.

2.3.14. Verantwortlichkeit

Die Servo Drives sind grundsätzlich nicht ausfallsicher. Bei einem Ausfall ist der Betreiber dafür verantwortlich, dass die Maschine / Anlage in einen sicheren Zustand geführt wird.

Sämtliche Diagnose- und Überwachungsfunktionen können lediglich die Ansteuerung des Motors unterbrechen. Dies hat zur Folge das der Motor stromlos wird und nicht mehr kontrolliert und gebremst werden kann. Je nach Anwendung ist es erforderlich zusätzliche Massnahmen zum Abbremsen oder Halten des Motors zu ergreifen.

Der Betreiber ist für die Sicherheit verantwortlich.

2.3.15. **Defekte Drives**

Defekte und beschädigte Drives dürfen unter keinen Umständen in Betrieb genommen werden. Dies kann zu schweren Personen- und Sachschäden führen.

2.4. Bestimmungsgemässe Verwendung

- Die Indel Servo Drives der Serie GIN-SAC4xX dürfen nur innerhalb der spezifizierten Angaben aus diesem Dokument und Dokumenten, auf welche verwiesen wird, verwendet werden.
- Die bestimmungsgemässe Verwendung ist so lange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtline 2006/42/EG sowie der EMV-Richtline 2014/20/EU entspricht, beziehungsweise dem aktuellen Stand der erwähnten Richtlinien. Ansonsten dürfen Maschinen mit Indel Servo Drives der Serie GIN-SAC4xX nicht in Verkehr gebracht werden.
- Die Kabellängen der Digitalen Ein- und Ausgänge ist maximal 30 Meter die der Motorenkabel maximal 20 Meter. Bei längeren Kabeln müssen zusätzliche Filter zur Entstörung verwendet werden.
- Die Indel Servo Drives der Serie GIN-SAC4xX dürfen nur im Industriebereich eingesetzt werden.
- Die Servo Drives der Serie GIN-SAC4xX sind zum Einbau in ortsfeste elektrische Maschinen/Anlagen bestimmt, welche die Maschinenrichtline, Niederspannungsrichtline sowie die EMV-Richtline erfüllen.
- Indel Servo Drives müssen in einen IP54 konformen Schaltschrank eingebaut werden, der nur mit einem Schaltschrankschlüssel oder Werkzeug geöffnet werden kann. Die Drives müssen so eingebaut werden, dass keine spannungsführenden Teile berührt werden können.
- Die auf Seite 118 in Kapitel 8.4 aufgeführten Umgebungsbedingungen müssen zwingend eingehalten werden. Um die Schaltschranktemperatur auf unter 40°C zu halten, sind allenfalls Belüftungs- oder Kühlungsmassnahmen nötig.
- Die Servo Drives der Serie GIN-SAC4xX k\u00f6nnen direkt an dreiphasigen, geerdeten Industrienetzen (TN-Netz, TT-Netz mit geerdetem Sternpunkt bei 400 V +10%) verwendet werden. Die Servo Drives d\u00fcrfen nicht an ungeerdeten Netzen und nicht an unsymmetrischen geerdeten netzen betreiben werden.
- Der Maschinenhersteller ist dazu verpflichtet eine Gefahrenanalyse der Maschine zu erstellen und mit geeigneten Massnahmen verhindern, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.
- · Die Drives dürfen in explosionsgefährdeten Bereichen nicht verwendet werden.

3. Handhabung

3.1. Lagerung

Die Indel GIN-SAC4xX Drives können bis 12 Monate ohne Einschränkungen gelagert werden. Bei Lagerung von mehr als 12 Monaten müssen die Kondensatoren vor der Inbetriebnahme des Drives neu formiert werden. Dazu müssen alle elektrischen Anschlüsse getrennt werden und an L1 / L2 während 20 min 230 V_{AC} eingespiesen werden.

3.2. Wartung

Bei bestimmungsgemässer Verwendung des GIN-SAC4xX FS ist keine Wartung notwendig. Bei äusserlicher Verschmutzung Gehäuse für Reinigung nicht tauchen oder absprühen. Bei Verschmutzung im inneren des Geräts: Reinigung durch den Hersteller.

3.3. **Reparatur-Dienst**

Reparaturen der Servo Drives müssen durch den Hersteller erfolgen. Die Indel Steuerungskomponenten können zu Indel zur Reparatur zurückgesandt werden. Nach der Reparatur sind die für den Betrieb nötigen Konfiguration Files auf dem Drive gelöscht. Mit Ausnahme der Stecker sind für Drives der Serie GIN-SAC4 FS keine Ersatzteile erhältlich bzw. notwendig.

Das Öffnen des Gehäuses sämtlicher Indel SAC4 Servo-Drives bedeutet den Verlust der Gewährleistung.

3.4. **Entsorgung**

Die Servo Drives bestehen aus folgenden Materialien:

- · Stahl Gehäuse
- · Aluminium Kühlkörper
- · Elektronische Leiterplatten

Die einzelnen Komponenten müssen fachgerecht entsorgt werden. Alle Servo Drives können zu Indel AG, zur fachgerechten Entsorgung zurückgesandt werden. Die Transportkosten gehen zulasten des Absenders.

4. Produktidentifizierung

Die GIN-SAC4xX gibt es in folgenden unterschiedlichen Versionen.

Тур	Option	Art. Nr.	Beschreibung
GIN-SAC4x4	5A/230V/FS	311349420	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 4xEndstufen, Total 20 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x4	5A/230V/PRO/FS	311349425	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 4xEndstufen, Total 20 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x4	5A/400V/FS	311349440	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 4xEndstufen, Total 20 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x4	5A/400V/PRO/FS	311349445	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 4xEndstufen, Total 20 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x3	5A/230V/FS	311349320	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 3xEndstufen, Total 15 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x3	5A/230V/PRO/FS	311349325	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 3xEndstufen, Total 15 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x3	5A/400V/FS	311349340	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 3xEndstufen, Total 15 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x3	5A/400V/PRO/FS	311349345	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 3xEndstufen, Total 15 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x2	5A/230V/FS	311349220	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 2xEndstufen, Total 10 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x2	5A/230V/PRO/FS	311349225	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 2xEndstufen, Total 10 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x2	5A/400V/FS	311349240	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 2xEndstufen, Total 10 Arms Dauerstrom, Single- Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, Gin- Slave
GIN-SAC4x2	5A/400V/PRO/FS	311349245	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 2xEndstufen, Total 10 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter

Тур	Option	Art. Nr.	Beschreibung
GIN-SAC4x1	5A/230V/FS	311349120	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 1xEndstufe, Total 5 Arms Dauerstrom, Single-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, GinSlave
GIN-SAC4x1	5A/230V/PRO/FS	311349125	Servo-Drive, Functional Safety, 1x230Vac/325Vdc, 1xEndstufe, Total 5 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter
GIN-SAC4x1	5A/400V/FS	311349140	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 1xEndstufen, Total 5 Arms Dauerstrom, Single-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, GinSlave
GIN-SAC4x1	5A/400V/PRO/FS	311349145	Servo-Drive, Functional Safety, 3x400Vac/565Vdc, 1xEndstufe, Total 5 Arms Dauerstrom, Dual-Core ARM 800 MHz, 8 MB Flash, 256 MB RAM, 0.5 MB NVRAM, GinSlave/GinMaster, SD-Card Adapter

4.1. Lieferumfang

4.1.1. **GIN-SAC4x4**

Bei Bestellung der GIN-SAC4x4 mit den Optionen 230V/FS, 400V/FS, 230V/PRO/FS und 400V/PRO/FS sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x4
- · Gegenstecker X7:

PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung

Gegenstecker X17:

PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X10, X11, X12, X13

PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X15

PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X16

PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X100

PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A, X1A, X2A, X3A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B, X2B, X3B
- Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- Safety-Konfigurations-Dateien welche für die Inbetriebnahme und den sicheren Betrieb zwingend notwendig sind.
- · Ethernet Kabel

4.1.2. **GIN-SAC4x3**

Bei Bestellung der GIN-SAC4x3 mit den Optionen 230V/FS, 400V/FS, 230V/PRO /FS und 400V/PRO/FS sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x3
- · Gegenstecker X7:

PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung

· Gegenstecker X17:

PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X10, X11, X12

PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X15

PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X16

PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X100

PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- Männliche 9 Pol D-Sub Gegenstecker für X0A, X1A, X2A
- Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B, X2B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Safety-Konfigurations-Dateien welche für die Inbetriebnahme und den sicheren Betrieb zwingend notwendig sind.
- Ethernet Kabel

4.1.3. **GIN-SAC4x2**

Bei Bestellung der GIN-SAC4x2 mit den Optionen 230V/FS, 400V/FS, 230V/PRO/FS und 400V/PRO/FS sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x2
- · Gegenstecker X7:

PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung

· Gegenstecker X17:

PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X10, X11

PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X15

PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X16

PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X100

PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für XOA, X1A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B, X1B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Safety-Konfigurations-Dateien welche für die Inbetriebnahme und den sicheren Betrieb zwingend notwendig sind.
- · Ethernet Kabel

4.1.4. **GIN-SAC4x1**

Bei Bestellung der GIN-SAC4x1 mit den Optionen 230V/FS, 400V/FS, 230V/PRO/FS und 400V/PRO/FS sind folgende Komponenten im Lieferumfang enthalten:

- Servo-Drive GIN-SAC4x1
- · Gegenstecker X7:

PHOENIX CONTACT DFMC 1,5 / 6-ST-3,5-LR mit spezifischer Indel Beschriftung

Gegenstecker X17:

PHOENIX CONTACT PC 4 HV / 4-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X10

PHOENIX CONTACT PC 5 / 4-STF-SH1-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X15

PHOENIX CONTACT PC 4 HV / 2-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X16

PHOENIX CONTACT PC 4 HV / 3-ST-7,62 mit spezifischer Indel Beschriftung

Gegenstecker X100

PHOENIX CONTACT DFMC 1,5 / 12-ST-3,5-LR mit spezifischer Indel Beschriftung

Nicht im Lieferumfang enthalten sind:

- · Männliche 9 Pol D-Sub Gegenstecker für X0A
- · Männliche 15 Pol D-Sub Gegenstecker für X0B
- · Motoren-Konfigurations-Files welche für den Betrieb der Motoren bzw. der Achsen zwingend notwendig sind.
- · Safety-Konfigurations-Dateien welche für die Inbetriebnahme und den sicheren Betrieb zwingend notwendig sind.
- · Ethernet Kabel

4.2. **Optionales Zubehör**

Тур	Art. Nr.	Beschreibung
SAC4-AD-2X	611755000	Steckbarer kompakter Adapter für GIN-SAC4xX, verbindet 2 Motor-Endstufen parallel, für höhere Motorströme. Montage erfolgt werkzeuglos durch einfaches Aufstecken auf den SAC4 und festdrehen der Rändelschrauben. Die Verbindung zum Motor erfolgt über den normalen, dem SAC4xX beiliegenden Motorstecker.

Anwendungsbeispiel SAC4-AD-2X

4.3. **Typenschilder**

4.3.1. GIN-SAC4x4 5A/230V/PRO/FS und GIN-SAC4x4 5A/230V/FS

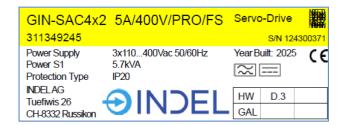
4.3.2. GIN-SAC4x4 5A/400V/PRO/FS und GIN-SAC4x4 5A/400V/FS

31.07.2025 Rev 2.1 Seite 34 von 161

4.3.3. GIN-SAC4x3 5A/230V/PRO/FS und GIN-SAC4x3 5A/230V/FS

4.3.4. GIN-SAC4x3 5A/400V/PRO/FS und GIN-SAC4x3 5A/400V/FS

31.07.2025 Rev 2.1 Seite 35 von 161



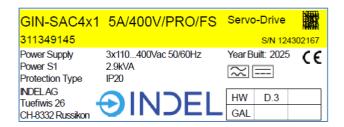
4.3.5. GIN-SAC4x2 5A/230V/PRO/FS und GIN-SAC4x2 5A/230V/FS

GIN-SAC4x2	5A/230V/FS	Servo-Drive	
311349220		S/N 124	300374
Power Supply Power S1 Protection Type	3x110230Vac 50/60Hz 3.3kVA IP20	Year Built: 2025	C€
INDELAG Tuefiwis 26	∌INDEL	HW D.3	
CH-8332 Russikon		GAL	

4.3.6. GIN-SAC4x2 5A/400V/PRO/FS und GIN-SAC4x2 5A/400V/FS

GIN-SAC4x2	2 5A/400V/FS	Servo	-Drive	
311349240			S/N 124	1300372
Power Supply Power S1 Protection Type	3x110400Vac 50/60Hz 5.7kVA IP20	Year B	uilt: 2025	C€
INDEL AG Tuefiwis 26 CH-8332 Russikon	⊕INDEL	HW GAL	D.3	

31.07.2025 Rev 2.1 Seite 36 von 161



4.3.7. GIN-SAC4x1 5A/230V/PRO/FS und GIN-SAC4x1 5A/230V/FS

GIN-SAC4x1	5A/230V/FS	Servo-Drive	羅
311349120		S/N 12430	2170
Power Supply Power S1 Protection Type	3x110230Vac 50/60Hz 1.7kVA IP20	Year Built: 2025	C€
INDEL AG Tuefiwis 26 CH-8332 Russikon	ÐIN DEL	HW D.3	

4.3.8. GIN-SAC4x1 5A/400V/PRO/FS und GIN-SAC4x1 5A/400V/FS

GIN-SAC4x1	5A/400V/FS	Servo-Drive	
311349140		S/N 1243	02168
Power Supply Power S1 Protection Type	3x110400Vac 50/60Hz 2.9kVA IP20	Year Built: 2025	C€
INDELAG Tuefiwis 26 CH-8332 Russikon	ÐIN DEL	HW D.3 GAL	

31.07.2025 Rev 2.1 Seite 37 von 161

5. Sicherheitstechnik

Dieses Kapitel beschreibt die Sicherheitstechnik des GIN-SAC4xX FS. Es wird die Beschaltung und die entsprechende Parametrisierung der einzelnen Komponenten beschrieben. Die Stecker bzw. Pinbelegung sämtlicher Anschlüsse ist in Kapitel 9.2 zu finden

5.1. Sicherheitsmodule Safe-AxControl und Safe-AxMonitor

Die Module Safe-AxControl (311347200) und Safe-AxMonitor (311347300) sind integrierter Bestandteil der GIN-SAC4xX FS Drives. Pro Drive ist ein Safe-AxControl Modul eingebaut und pro Achse ein Safe-AxMonitor Modul.

Die Module Safe-AxControl und Safe-AxMonitor sind fest verbaut und können nicht nachgerüstet oder ausgetauscht werden.

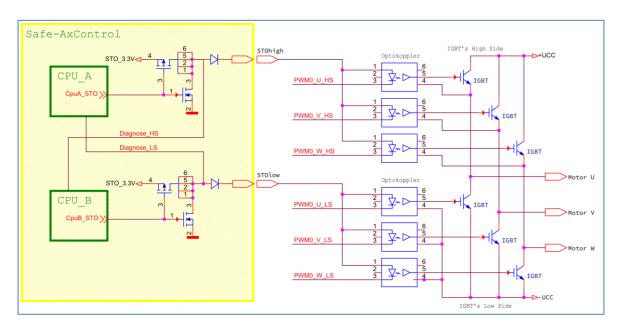
Safe-AxControl und Safe-AxMonitor Module funktionieren im Verbund. Dabei implementiert das Safe-AxControl Modul die sicheren Ein- und Ausgänge sowie die Impulsmustersperrung. Das Safe-AxMonitor Modul implementiert die sichere Geberauswertung.

Die einzelnen Module werden als einzelne Geräte (Devices) eines gemeinsamen Knotens konfiguriert.

5.1.1. Parameter

Für alle Module muss die korrekte Position im System konfiguriert werden. Die Position wird nach dem Einlesen der Konfiguration vom Modul überprüft.

Parameter	Einheit	Defaultwert	Beschreibung	
Gruppe <geräteposition></geräteposition>				
Feldbus-Position	-	0	Position des GIN-SAC4xX innerhalb des Feldbusses.	
Achsennummer	-	0	Achsennummer des Moduls im GIN-SAC4xX	
			Hinweis: Parameter ist nur auf Safe-AxMonitor Modul vorhanden.	


5.2. Ruhestromprinzip

Die Sicherheitstechnik der Module im GIN-SAC4xX FS funktioniert nach dem Ruhestromprinzip. Wird ein sicherer Eingang auf Null geschaltet oder wird der Stromfluss unterbrochen, so wird jeweils in die entsprechende Sicherheitsunterfunktion aktiviert. Dieses Prinzip muss bei der Beschaltung und Konfiguration ebenfalls berücksichtigt werden, so dass beim Abfallen eines Signals immer in den sichersten der möglichen Zustände gewechselt wird.

5.3. Sichere Impulssperre

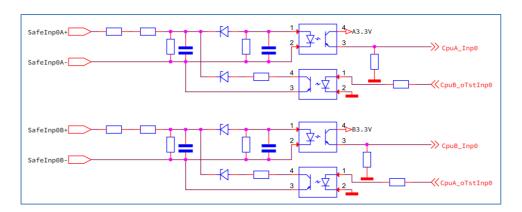
Das Safe-AxControl Modul verfügt über eine sichere, zweikanalige Impulssperre. Die Impulssperre ist über die Abschaltung der Speisung der Optokoppler des GIN-SAC4xX implementiert. Die Speisung ist vollständig in den Drive integriert und benötigt keine Verdrahtung. Die Impulssperre des Safe-AxControl Modul wird zurückgelesen und getestet.

5.3.1. Maximale Bewegung im Fehlerfall

Es ist zu beachten das durch einen Mehrfachfehler in der IGBT Brücke ein kurzzeitiges Anrucken des Motors möglich ist. Der bei der Anruckbewegung auftretende maximale Drehwinkel der Motorwelle ist abhängig von der Polpaarzahl des verwendeten Motors.

Für permanenterregte Servomotoren:

$$\varphi = \frac{360^{\circ}}{2 \cdot p}$$
 $\varphi = Drehwinkel; p = Polpaarzahl$


Für Linearmotoren:

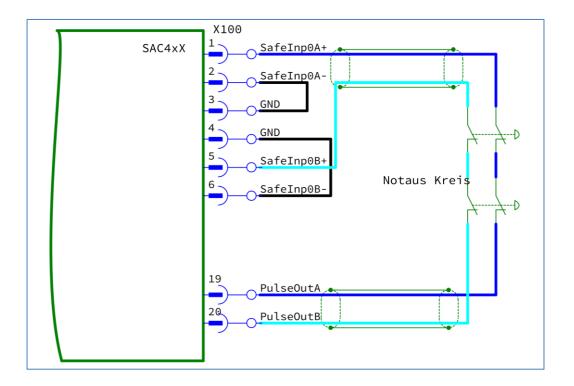
$$d = \frac{P}{2}$$
 $d = Distanz der Motorbewegung; $P = Polabstand Motor$$

5.4. Sicherer, zweikanaliger, isolierter Eingang: Sicherer Eingang 0 (STO)

Der sichere Eingang 0 (STO) des GIN-SAC4xX FS ist intern an das Safe-AxControl Modul verbunden. Dieser Eingang dient entweder dem Anschluss eines Not-Aus-Kreises, Türkontaktes u.ä. oder den Anschluss des GIN-SAC4xX FS an eine übergeordnete Sicherheitssteuerung.

Der Eingang 0 (STO) wird als Freigabe des Drives zwingend benötigt und kann nicht deaktiviert werden. Im Falle eines Fehlens oder Abfallen des Eingang 0 (STO) leitet das Safe-AxControl Modul die Funktion STO ein.

Erst nach Anliegen eines Signals an Eingang 0 (STO) und der Quittierung (Confirm) wird die Impulsspeisung wieder freigegeben.


5.4.1. Kennwerte

Kennwert	Minimum	Maximum
Spannung Eingang <hoch></hoch>	16 V	30 V
Strom Eingang <hoch></hoch>	2 mA	15 mA
Spannung Eingang <tief></tief>	-3 V	5 V
Strom Eingang ‹tief›	Keines	15 mA
Störungsfilter	Keines	1 200 μs
Testimpulsfilter auf einem Kanal	Keines	10 ms
Erlaubter inkonsistenter Zustand zwischen den Kanälen	Keines	1 s

5.4.2. Anschluss an einen Not-Halt-Kreis

Beim Anschluss von passiven Sicherheitsschaltern wie Not-Halt-Tastern müssen die vom GINSAC4xX FS zu Verfügung gestellten Testimpulsausgänge verwendet werden. Dabei wird Eingang 0 (STO) A an Pulsausgang A und Eingang 0 (STO) B an Pulsausgang B angeschlossen. Der Parameter Eingang 0 (STO) der Konfiguration muss auf den Wert «Gepulst» gesetzt werden. Die negativen Anschlüsse des sicheren Eingangs 0 (STO) müssen mit der Masse des GIN-SAC4xX FS verbunden sein.

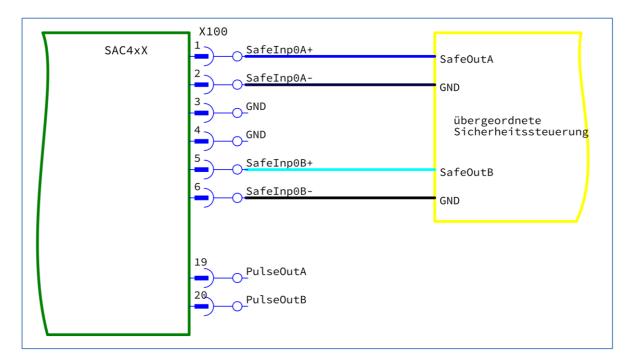
Werden mehrere Eingänge des GIN-SAC4xX FS gepulst verwendet, so müssen die verschiedenen Eingänge jeweils in unterschiedlichen Kabeln geführt werden, da es ansonsten zu nicht detektierbaren Querschlüssen zwischen den verschiedenen Eingänge (0 - 3) des selben Kanals (A/B) kommen kann. Ansonsten muss ein Fehlerausschluss nach EN ISO 13849-2:2012 umgesetzt werden.

Sind die Leitungen ausserhalb des Schaltschranks geführt, so sind zusätzliche Massnahmen notwendig (z.B. Schirmung oder spezielle Ummantelung der Kabel).

Wird die Querschlusserkennung des GIN-SAC4xX FS verwendet muss der Parameter Eingang 0 (STO) auf «Gepulst» gesetzt sein.

Die Pulsausgänge des GIN-SAC4xX FS dürfen nur auf sichere Eingänge von Indel Geräten verdrahtet werden.

Die maximale zugelassene Kabellänge der sicheren, digitalen Eingänge ist 30 Meter. Bei Verwendung längerer Kabel müssen zusätzliche Massnahmen (wie z.B. Filter) zur Entstörung getroffen werden. Die Auswahl der getroffenen Massnahmen muss einer Sicherheitsbetrachtung unterzogen werden.



Die Testpulsausgänge haben einen Nennstrom von max. 50 mA.

5.4.3. Anschluss an eine übergeordnete Sicherheitssteuerung

Wird Eingang 0 (STO) von einer übergeordneten Steuerung angesteuert, muss ein zweikanaliger Ausgang (OSSD) verwendet werden. Die negativen Anschlüsse von Eingang 0 (STO) müssen an die Masse (GND) oder den entsprechenden negativen Anschluss der sicheren Ausgänge zurückverdrahtet werden.

Bei der Verdrahtung des Eingangs 0 (STO) an einen sicheren Ausgang sind die Sicherheitsanweisungen des entsprechenden Ausgangmoduls zu beachten.

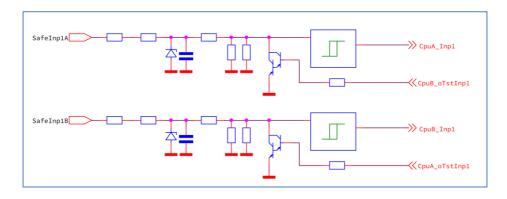
Bei Verwendung eines anderen Signals als das der eigenen Testausgänge wird vom GIN-SAC4xX keine Querschlusserkennung durchgeführt. Die Querschlusserkennung muss vom Ausgangmodul durchgeführt werden. Ansonsten muss ein Fehlerausschluss nach EN ISO 13849-2:2012 umgesetzt werden.

Wird ein Fremdsignal verwendet muss der Parameter Eingang 0 (STO) auf «Nicht gepulst» gesetzt sein.

Werden die Signale vom externen Gerät mit Testimpulsen getestet, so müssen die Testimpulse der beiden Kanäle zeitversetzt sein und der Testimpuls darf maximal 10 ms auf «tief» gehen. Wird dies nicht eingehalten, so geht der Zustand des Eingangs auf «tief» und die parametrisierte Sicherheitsunterfunktion wird aktiv.

5.4.4. Parameter

Parameter	Einheit	Defaultwert	Beschreibung
Gruppe < Eingangsl	konfiguration› a	uf Safe-AxContro	l
Eingang 0 (STO)	Gepulst / Nicht ge- pulst	Gepulst	Definiert ob die Überprüfung der Testimpulse des Eingangs 0 aktiv ist. Hinweis: Eingang 0 kann nicht deaktiviert wer- den.

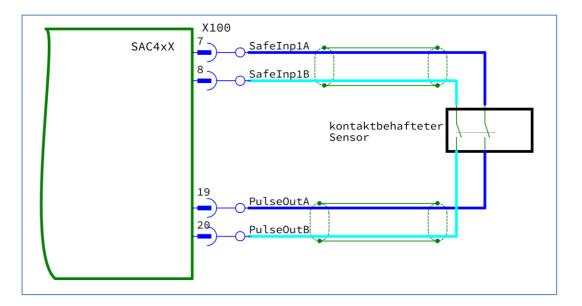

5.5. Sicherere, zweikanalige Eingänge 1 - 3

Die sicheren Eingänge 1 - 3 des GIN-SAC4xX FS dienen der Festlegung der aktiven Sicherheitsstufe im Betrieb. Die Berechnung der Sicherheitsstufe anhand der Eingangssignale ist in Kapitel 5.16 beschrieben. Die sicheren Eingänge 1 - 3 werden vom Safe-AxControl Modul verarbeitet.

Die sicheren Eingänge müssen in aufsteigender Reihenfolge (ohne Lücken) verwendet werden.

Werden mehrere GIN-SAC4xX in einer Ringschaltung verknüpft, so wird der sichere Ausgang eines GIN-SAC4x4 auf den sicheren Eingang 3 des jeweils nächsten GIN-SAC4x4 verdrahtet, dieser wird dann für die Berechnung der Sicherheitsstufe ignoriert.

Bei Nichtverwendung müssen die sicheren Eingänge in der Konfiguration des Safe-AxControl Moduls deaktiviert werden.


5.5.1. **Kennwerte**

Kennwert	Minimum	Maximum
Spannung Eingang <hoch></hoch>	16 V	30 V
Strom Eingang <hoch></hoch>	2 mA	15 mA
Spannung Eingang <tief></tief>	-3 V	5 V
Strom Eingang ‹tief›	-	15 mA
Störungsfilter	-	1 200 μs
Testimpulsfilter auf einem Kanal	-	10 ms
Erlaubter inkonsistenter Zustand zwischen den Kanälen	-	1 s

5.5.2. Anschluss von zweikanaligen, kontaktbehafteten Sensoren

Beim Anschluss von passiven Sicherheitsschaltern, wie Sicherheitsschalter für Schutztüren oder Schutzhauben, müssen die vom GIN-SAC4xX FS zur Verfügung gestellten Testimpulsausgänge verwendet werden. Dabei wird jeweils Kanal A des Eingangs an Pulsausgang A und Kanal B des Eingangs an Pulsausgang B angeschlossen. Der Parameter Eingang 1 - 3 der Konfiguration muss auf den Wert «Gepulst» gesetzt werden.

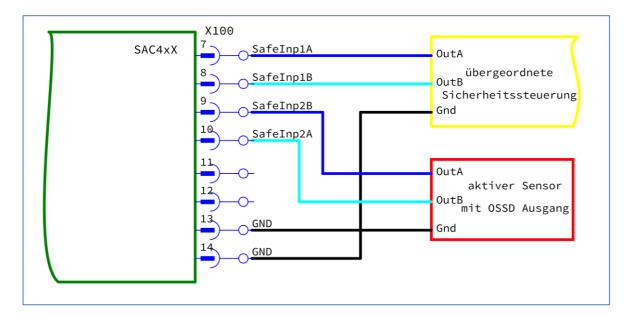
Werden mehrere Eingänge des GIN-SAC4xX FS mit gepulst verwendet, so müssen die Verschiedenen Eingänge jeweils in unterschiedlichen Kabeln geführt werden, da ansonsten zu nicht detektierbaren Querschlüssen zwischen den verschiedenen Eingänge (0 - 3) des selben Kanals (A/B) kommen kann. Ansonsten muss ein Fehlerausschluss nach EN ISO 13849-2:2012 umgesetzt werden

Sind die Leitungen ausserhalb des Schaltschranks geführt, so sind zusätzliche Massnahmen notwendig (z.B. Schirmung oder spezielle Ummantelung der Kabel).

Wird die Querschlusserkennung des GIN-SAC4xX FS für die sicheren Eingänge 1 - 3 verwendet muss der Parameter Eingang X des entsprechenden Eingangs auf «Gepulst» gesetzt sein.

Die Pulsausgänge des GIN-SAC4xX FS dürfen nur auf sichere Eingänge von Indel Geräten verdrahtet werden.

Die maximale zugelassene Kabellänge der sicheren, digitalen Eingänge ist 30 Meter. Bei Verwendung längerer Kabel müssen zusätzliche Massnahmen (wie z.B. Filter) zur Entstörung getroffen werden. Die Auswahl der getroffenen Massnahmen muss einer Sicherheitsbetrachtung unterzogen werden.



Die Testpulsausgänge haben einen Nennstrom von max. 50 mA.

5.5.3. Anschluss an einen sicheren, zweikanaligen Ausgang

Die sicheren Eingänge 1 - 3 können jeweils an einen zweikanaligen, sicheren Ausgang (OSSD) angeschlossen werden. Dies ermöglicht das Anschliessen von aktiven Sensoren wie Lichtgittern oder das Anschliessen einer übergeordneten Steuerung. Die GND Anschlüsse von SAC4xX und Sicherheitssteuerung resp. aktivem Sensor müssen zusätzlich, direkt miteinander verbunden werden.

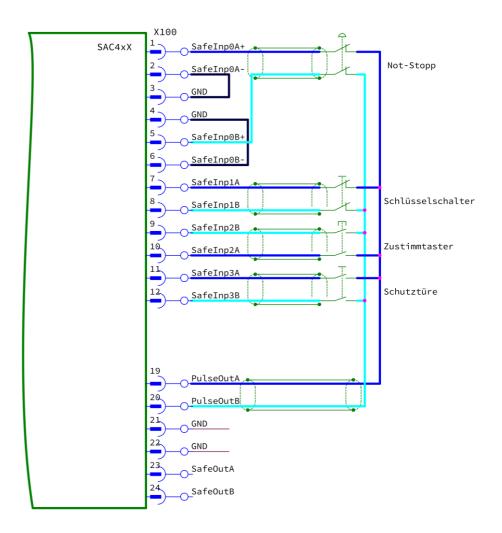
Bei der Verdrahtung der Eingänge 1 - 3 an einen sicheren Ausgang sind die Sicherheitsanweisungen des entsprechenden Ausgangsmoduls zu beachten

Bei Verwendung eines anderen Signals als das der eigenen Testausgänge wird von GIN-SAC4xX keine Querschlusserkennung durchgeführt. Die Querschlusserkennung muss vom Ausgansmodul durchgeführt werden. Ansonsten sind andere fehlervermeidende Massnahmen nach EN ISO 13849-2:2012 zu befolgen.

Ist ein Eingang unbenutzt (nicht verdrahtet), so muss der entsprechende Eingang als ‹in-aktiv› konfiguriert werden. Das Signal dieses Eingangs nimmt dann permanent den Zustand ‹tief› ein.

Die sicheren Eingänge 1 - 3 sind **nicht** potentialfrei. Es ist sicherzustellen, dass sich der GIN-SAC4xX FS und der angeschlossene Ausgang über das gleiche Potential verfügen.

Wird ein Fremdsignal verwendet muss der Parameter Eingang 0 (STO) auf «Nicht gepulst» gesetzt sein.



Werden die Signale vom externen Gerät mit Testimpulsen getestet, so müssen die Testpulse der beiden Kanäle zeitversetzt sein und der Testimpuls darf maximal 10 ms auf tief gehen. Wird dies nicht eingehalten, so geht der Zustand des Eingangs auf tief und die parametrisierte Sicherheitsunterfunktion wird aktiv.

5.5.4. Verwendung der Pulssignale für mehrere Eingänge

Werden die vom GIN-SAC4xX FS zur Verfügung gestellten Pulssignale für mehr als ein Eingangspaar benutzt so ist zwingend auf eine korrekte Verdrahtung zu achten.

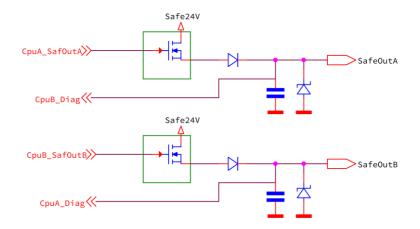
Leitungen welche die gleichen Pulssignale verwenden, dürfen nicht im gleichen Kabel geführt werden, da ein möglicher Querschluss nicht erkannt werden kann.

5.5.5. Fehlererkennung durch das Sicherheitsmodul

Das im GIN-SAC4xX FS verbaute Safe-AxControl Modul verfügt bei Verwendung der zur Verfügung gestellten Pulssignale über die folgende Erkennung von externen Fehlern an den Eingängen.

Fehler	Erkennung	Hinweis
Schluss von 24 V auf Eingang	Ja	
Masseschluss auf Eingang bei geschlossenem Kontakt	Ja	
Masseschluss auf Eingang bei of- fenem Kontakt	Nein	Bei Einhaltung des Ruhestromprinzip führt dieser Fehler zu keiner Gefährdung
Drahtbruch bei geschlossenem Kontakt	Ja	
Drahtbruch bei offenem Kontakt	Nein	Bei Einhaltung des Ruhestromprinzip führt dieser Fehler zu keiner Gefährdung
Querschluss von Pulssignal eines anderen Kanales (A bzw. B) auf Ein- gang	Ja	
Querschluss von Pulssignal des- selben Kanales (A bzw. B) auf Ein- gang	Nein	Muss durch Verdrahtung ausgeschlossen werden
Masseschluss auf Pulsausgang	Ja	
Schluss von 24 V auf Pulsausgang	Ja	
Querschluss zwischen Pulsausgängen	Ja	

Der Errorcode der Fehlererkennung definiert die Nummer des Eingangs. Dies entspricht dem Ort der Fehlererkennung welche nicht zwingend dem Ort des Fehlers entspricht. Zur Lokalisierung des Fehlers sollten alle Eingänge einzeln auf ‹hoch› geschaltet werden um eine genaue Lokalisierung zu erreichen.


5.5.6. Parameter

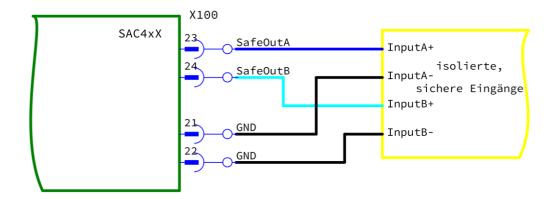
Parameter	Einheit	Defaultwert	Beschreibung	
Gruppe <eingangskonfiguration> auf Safe-AxControl</eingangskonfiguration>				
Eingang 1	Gepulst / Nicht gepulst / Inaktiv	Inaktiv	Definiert ob Eingang 1 aktiv mit Pulsüberwa- chung. Aktiv ohne Pulsüberwachung oder inaktiv ist.	
Eingang 2	Gepulst / Nicht gepulst / Inaktiv	Inaktiv	Definiert ob Eingangs 2 aktiv mit Pulsüberwa- chung. Aktiv ohne Pulsüberwachung oder inaktiv ist.	
Eingang 3	Gepulst / Nicht gepulst / Inaktiv	Inaktiv	Definiert ob Eingangs 3 aktiv mit Pulsüberwa- chung. Aktiv ohne Pulsüberwachung oder inaktiv ist. Hinweis: Bei aktiver Ringschaltung ist dieser Pa- rameter gesperrt, da Eingang 3 für die Ringschal- tung verwendet wird.	

5.6. Sicherer, zweikanaliger Ausgang

Der GIN-SAC4xX verfügt über einen sicheren, zweikanaligen Ausgang zur Rückmeldung des Zustands der Impulsmustersperre. In der Standardkonfiguration (ohne Ringschaltung) entspricht der Zustand des Ausgangs immer der Freigabe des Impulsmusters. Das heisst, der Ausgang geht auf ‹tief› wenn das Modul in den Zustand ‹STO› oder in den Fehlerzustand wechselt.

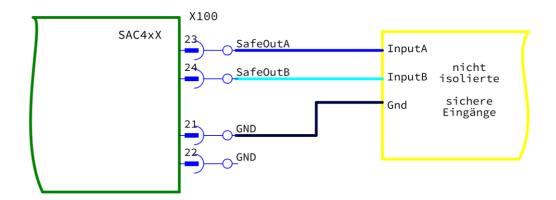
Der sichere, zweikanalige Ausgang darf nicht direkt zur Ansteuerung einer Motorbremse oder Sicherheitsbremse verwendet werden.

Die maximale zugelassene Kabellänge der sicheren, digitalen Ausgänge ist 30 Meter. Bei Verwendung längerer Kabel müssen zusätzliche Massnahmen (wie z.B. Filter) zur Entstörung getroffen werden. Die Auswahl der getroffenen Massnahmen muss einer Sicherheitsbetrachtung unterzogen werden.


Bei Nichtverwendung muss der sichere Ausgang in der Konfiguration des Safe-AxControl Moduls deaktiviert werden.

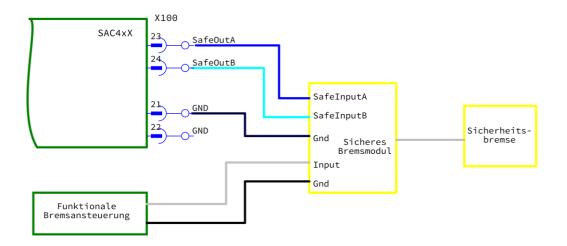
5.6.1. Kennwerte

Kennwert	Minimum	Maximum
Spannung Ausgang <hoch></hoch>	19 V	30 V
Spannung Ausgang <tief></tief>	0 V	5 V
Strom	Keines	500 mA
Kapazitive Last	Keines	10 nF
Testimpulslänge	200 μs	800 μs
Testimpulsintervall pro Kanal	1 s	60 s


5.6.2. Anschluss an einen isolierten, sicheren Eingang

Wird der sichere Ausgang an einen isolierten Eingang angeschlossen, muss der negative Anschluss des sicheren Eingangs an die Masse des GIN-SAC4xX FS zurückverdrahtet werden.

5.6.3. Anschluss an einen nicht-isolierten, sicheren Eingang



Wird der sichere Ausgang an einen nicht-isolierten Eingang angeschlossen, müssen die Massen des GIN-SAC4xX FS und des Eingangsmoduls zusätzlich miteinander verbunden sein, da ansonsten bei Drahtbruch an der Masse des GIN-SAC4xX FS (Einfachfehler) am sicheren Ausgang im ausgeschaltetem Zustand ein Strom fliesst.

5.6.4. Anschluss an eine sichere Bremsenansteuerung

Wird der sichere Ausgang als Ansteuerung für eine Bremse verwendet, so ist ein Bremsenansteuerungsmodul zwischen sicheren Ausgang und Bremse zu schalten. Zusätzlich zur sicheren Bremsenansteuerung muss in der Regel die Bremsenfreigabe der funktionalen Steuerung an das Bremsmodul angeschlossen werden.

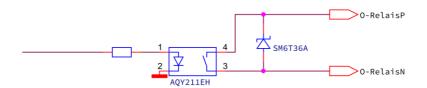
Verfügt das sichere Bremsmodul über isolierte Eingänge so sind die Massen beider Kanäle mit dem GIN-SAC4xX zu verbinden.

5.6.5. Fehlererkennung durch das Sicherheitsmodul

Das Safe-AxControl Modul des GIN-SAC4xX FS überwacht den sicheren, zweikanaligen Ausgang mit Testimpulsen. Dadurch können folgende externe Fehler aufgedeckt werden.

Fehler	Erkennung	Hinweis
Schluss von 24 V auf Ausgang	Ja	
Masseschluss auf Ausgang bei eingeschaltetem Ausgang	Ja	
Masseschluss auf Ausgang bei ausgeschaltetem Ausgang	Nein	Bei Einhaltung des Ruhestromprinzip führt dieser Fehler zu keiner Gefährdung
Drahtbruch	Nein	Bei Einhaltung des Ruhestromprinzip führt dieser Fehler zu keiner Gefährdung
Querschluss zwischen Kanal A und B bei eingeschaltetem Ausgang	Ja	
Querschluss zwischen Ausgang A und B bei ausgeschaltetem Aus- gang	Nein	Bei Einhaltung des Ruhestromprinzip führt dieser Fehler zu keiner Gefährdung
Schluss von 24 V auf Masse (Ground)	Nein	Ground des Ausgangs muss mit Ground des angesteuerten Eingangs verbunden sein um eine Gefährdung auszuschliessen

5.6.6. Parameter

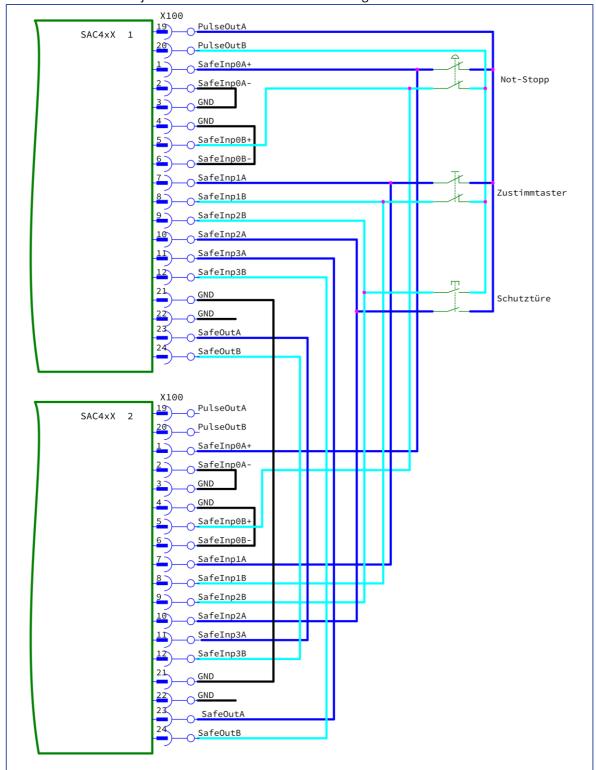

Parameter	Einheit	Defaultwert	Beschreibung
Gruppe < Ausga	ngskonfiguration> a	auf Safe-AxContro	bl
Ausgang	Inaktiv / Aktiv	Inaktiv	Definiert ob der sichere Ausgang inaktiv oder aktiv ist. Hinweis: Bei aktiver Ringschaltung ist dieser Parameter gesperrt, da der Ausgang für die Ringschaltung verwendet wird.

5.7. Nicht sicherer, einkanaliger, isolierter Ausgang

Zusätzlich zum sicheren, zweikanaligen Ausgang verfügt der GIN-SAC4xX über einen nicht sicheren, einkanaligen, isolierten Ausgang, in Form eines Kontakts. Dieser kann als Rückmeldekanal an eine übergeordnete Steuerung verwendet werden.

Genau wie der sichere Ausgang, spiegelt der nicht sichere Ausgang jeweils den Zustand der Optokopplerspeisung.

Der Ausgangskontakt ist also jeweils <offen> resp. <hochohmig> wenn die Safety die Achsen für den normalen Betrieb freigeschaltet hat und ‹geschlossen›, resp. <niederohmig> wenn der Zustand STO anliegt.


5.7.1. Kennwerte

Kennwert	Typisch	Maximum
Spannung		30 V
Laststrom		500 mA
Widerstand bei Ausgang (geschlossen)	0.25 Ω	0.5 Ω
Leckstrom bei Ausgang ‹offen›		1 μΑ

5.8. Ringschaltung mehrerer GIN-SAC4xX FS

Es ist möglich, mehrere GIN-SAC4xX FS miteinander zu betreiben in dem diese in einem Ring zusammengeschaltet werden. Dabei wird der sichere Ausgang jeweils auf den sicheren Eingang 3 des nächsten GIN-SAC4xX FS verdrahtet. Der letzte GIN-SAC4xX FS wird dann zurück auf den ersten Verbunden. Durch die Ringschaltung werden, bei einer Verletzung einer Sicherheitsunterfunktion in einem GIN-SAC4xX FS jeweils alle Drives in den Zustand (STO) gebracht.

Die angeschlossenen Sicherheitselemente müssen an alle GIN-SAC4xX FS verbunden werden. Wobei für die Kreuz- und Querschlusserkennung pro Kanal jeweils nur ein Drive die Testimpulse liefert.

In der sicheren Konfiguration muss auf allen GIN-SAC4xX FS die Option (Ringschaltung) aktiviert werden.

Pro GIN-SAC4xX FS welcher im Ring verbunden ist muss für die sichere Reaktionszeit 3 275 µs hinzugerechnet werden. Die gesamte sichere Reaktionszeit darf die geforderte sichere Prozesssicherheitszeit (PST) nicht überschreiten.

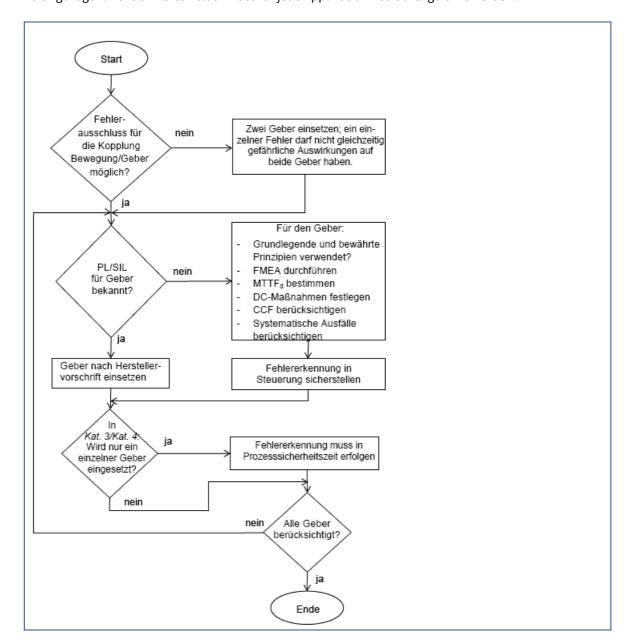
Für die Sicherheitsbewertung von GIN-SAC4xX FS in Ringschaltung müssen alle GIN-SAC4xX FS die zu einem Ring zusammengeschlossen sind als in Serie geschaltete Funktionsblöcke betrachtet werden.

Für die Ringschaltung gelten sämtliche Sicherheitsbestimmungen zur Verdrahtung der Ein- und Ausgänge wie sie in diesem Dokument definiert sind.

Bei aktiver Ringschaltung sollte wenn möglich für alle STO-Eingänge welche Testpulse benötigen, die Testpulse vom ersten GIN-SAC4xX im Feldbus verwendet werden. Dies garantiert, dass die Testsignale bereits zu Verfügung stehen, wenn die weiteren GIN-SAC4xX in den operativen Zustand wechseln.

5.8.1. Parameter

Parameter	Einheit	Defaultwert	Beschreibung	
Gruppe ‹Generelle Konfiguration› auf Safe-AxControl				
Ringschaltung	Inaktiv / Aktiv	Inaktiv	Definiert ob die Ringschaltung aktiv ist.	



5.9. Sichere Geberauswertung und Geberüberwachung

Der GIN-SAC4xX FS Drive verfügt pro Achse über ein fix verbautes Safe-AxMonitor Modul welches die sichere Auswertung und Überwachung von je einem Resolver oder Sin/Cos-Geber ermöglicht.

5.9.1. Integration in die Sicherheitskette

Für die Integration eines Gebers in die Sicherheitskette wird hier ein Diagramm des IFA-Leitfaden (http://www.dguv.de/medien/ifa/de/pub/rep/pdf/reports2013/ifar0713/positionsgeber_ifa.pdf) herangezogen. Der definierte Ablauf muss für jede Applikation neu durchgeführt werden.

Für den Anschluss eines Gebers für die sichere Überwachung ist vom Anwender eine Gefahrenanalyse durchzuführen. Der Anwender ist für die korrekte Auswahl, Montage und Wartung des Gebers verantwortlich. Es sind die Anforderungen dieses Handbuchs so wie diejenigen des Handbuchs des Gebers zu beachten.

Folgende Informationen und Untersuchungen sind für Standardgeber erforderlich:

- Wurden grundlegende und bewährte Prinzipien verwendet?
- Sicherheitsstruktur (Kat.) FMEA durchführen
- Ausfallrate der Bauteile (MTTFd bzw. FIT)
- Diagnosedeckungsgrad (DC)
- Vermeidung von Fehlern gemeinsamer Ursache (CCF)
- Systematische Ausfälle berücksichtigen
- Ist Fehlerausschluss für Kopplung zwischen bewegter Achse und Geber möglich?

5.9.2. Fehlererkennung des GIN-SAC4xX FS bei Anschluss von Resolvern

Wird zur sicheren Achsenüberwachung ein Resolver verwendet, überwacht das Safe-AxMonitor Modul der Achse das Signal auf folgende Kriterien:

- Die Signalstärke (sin² + cos²) ist innerhalb der konfigurierten Toleranz
- Der Signalwert jedes Signals ist im Maximum des Modulationssignals invers zum Wert im Minimum des Modulationssignals

Die folgende Tabelle listet die externen Fehlerfälle auf, welche durch die Überwachung erkannt werden.

Fehlerfall	Fehlereffekt
Drahtbruch in Rotorwicklung (Sendeteil)	Kein Aufbau eines Magnetfeldes daher kein Strom. Die Sinus- und Cosinuswicklung am Stator bekommen kein Signal
Kurzschluss in der Rotorwicklung (Sendeteil)	Kein Aufbau eines Magnetfeldes daher kein Strom. Die Sinus- und Cosinuswicklung am Stator bekommen kein Signal
Teilkurzschluss in der Rotorwicklung (Sendeteil)	Änderung der Spannung und daher Änderung der Amplitude am Sinus- und Cosinussignal
Drahtbruch im Transformatorteil des Rotors	Die Sinus- und Cosinuswicklung am Stator bekommen kein Signal
Kurzschluss im Transformatorteil des Rotors	Die Sinus- und Cosinuswicklung am Stator bekommen kein Signal.
Teilkurzschluss im Transformatorteil des Rotors	Änderung der Spannung und daher Änderung der Amplitude am Sinus- und Cosinus- Signal
Drahtbruch zwischen Rotorwicklung und Transformatorwicklung	Kein Aufbau eines Magnetfeldes und daher keine Rückführmöglichkeit des Signales an den Stator.
Drahtbruch an der Erregerwicklung (Transformatorteil)	Kein Strom und daher kein Aufbau eines Magnetfeldes. Die Sinus- und Cosinuswicklung bekommen kein Signal.
Kurzschluss an der Erregerwicklung (Transformatorteil)	Kein Strom und daher kein Aufbau eines Magnetfeldes. Die Sinus- und Cosinuswicklung bekommen kein Signal.
Teilweiser Kurzschluss an der Erreger- wicklung (Transformatorteil)	Änderung der Spannung und daher Änderung der Amplitude am Sinus- und Cosinus- Signal

Fehlerfall	Fehlereffekt
Drahtbruch an der Sinuswicklung	Sinussignal ist auf Wert 0
Kurzschluss an der Sinuswicklung	Sinussignal ist auf Wert 0
Teilweiser Kurzschluss an der Sinuswick- lung	Geringere Amplitude des Signals
Drahtbruch an der Cosinuswicklung	Cosinussignal ist auf Wert 0
Kurzschluss an der Cosinuswicklung	Cosinussignal ist auf Wert 0
Teilweiser Kurzschluss an der Cosinus- wicklung	Geringere Amplitude des Signals
Einfacher Kurzschluss zwischen Erreger- wicklung am Stator und Sinuswicklung	Kein oder nur schwaches Signal an der Cosinuswicklung
Einfacher Kurzschluss zwischen Erreger- wicklung am Stator und Cosinuswick- lung	Kein oder nur schwache Signal an der Sinuswicklung
Kurzschluss zwischen Erregerwicklung am Stator und Sinuswicklung (2 Kurz- schlüsse, Brückenbildung, Mehrfachfeh- ler)	Kein Signal an der Cosinuswicklung
Kurzschluss zwischen Erregerwicklung am Stator und Cosinuswicklung (2 Kurz- schlüsse, Brückenbildung, Mehrfachfeh- ler)	Kein Signal an der Sinuswicklung
Mitdrehung des Stators	Mechanischer Fehler wird nur indirekt erkannt. Abbruch der Signalleitungen führt dazu, dass kein gültiges Signal mehr anliegt.
Kurzschlüsse zwischen Leitungen des Stators und dem Gehäuse des Motors	Je nach Aufbau der Eingangsschaltung der analogen Auswertung spielt der Fehler keine Rolle (da keine Po- tentialverschiebung auftritt). Sofern die Eingangsschal- tung feste Potentialzuordnung benötigt, finden Kurz- schlüsse statt.
Querschluss des Erregersignals auf ein Fremdsignal	Keine Signale an Sinus- und Cosinuswicklung
Querschluss des Sinussignals auf in Fremdsignal	Sinussignal ist statisch auf einem Wert
Querschluss des Cosinussignals auf ein Fremdsignal	Cosinussignal ist statisch auf einem Wert

Bei einem Neustart geht der Bereitschaftszustand der Achsenüberwachung erst auf «ready» wenn auf beiden Kanälen ein Signal ungleich 0 Volt gemessen wurde. Nach dem Neustart müssen sich alle Achsen vor der Anforderung einer Sicherheitsunterfunktion mindestens einmal ausserhalb eines Nulldurchgangs befunden haben. Ein direktes, erstes Aktivieren der Achsen in den Zuständen SLS oder SOS ist in den Nulldurchgängen des Sinus- oder Cosinussignals nicht möglich.

Für die Erregung des Resolvers dürfen nur die vom GIN-SAC4xX zur Verfügung gestellten Erregersignale verwendet werden.

5.9.3. Anforderungen an die Verwendung von Resolvern

Folgende Tabelle listet die nicht detektierbaren Fehlerfälle von Resolvern. Die Massnahmen in der Spalte «Anforderung» sind durch den Anwender oder dem Geberhersteller durchzuführen.

Fehlerfall	Fehlereffekt	Anforderung
Durchrutschen der Lastachse	Keine oder falsche Position/Bewegung wird erfasst	Der Resolver ist mit der Antriebswelle fest zu verbinden. Bei variablen Getrieben oder Rie- menantrieben muss der Resolver auf die Lastachse gebracht werden, da in der Regel kein fester Bezug zwischen Antriebs- und Last- funktion besteht.
Durchrutschen des Ro- tors an der Welle	Keine oder falsche Position/Bewegung wird erfasst	Der Resolver muss entweder mit einer form- oder kraftschlüssigen Verbindung mit der An- triebswelle verbunden sein. Die Passung ist derart auszulegen, dass sie mindestens um den nach DIN EN 61800-5-2 vorgeschriebenen Fak- tor überdimensioniert ist.
Kurzschluss zu Ausgang eines Phasenschiebers	Fehler wird nicht de- tektiert. Keine oder falsche Position/Bewegung wird erfasst	Die Verwendung von Phasenschiebern in der Si- cherheitskette ist nicht erlaubt.
Mitdrehung des Stators	Keine oder falsche Position/Bewegung wird erfasst	Der Stator ist mit einem kurzen Kabel zu verbin- den, so dass ein Mitdrehen sofort durch einen Abriss erkannt wird.
Vertauschen des Sinus- und Cosinus-Signals	Drehrichtung wird falsch erkannt	Vor der Inbetriebnahme muss die korrekte Sig- nalverdrahtung überprüft werden.

5.9.4. Kennwerte der sicheren Auswertung von Resolvern

Unter Einhaltung aller Anforderungen werden alle Fehler innerhalb der Prozesssicherheitszeit erkannt. Es werden folgende Kennwerte erreicht.

Safety Integration Level (SIL) nach IEC 61508: 3

Diagnose-Deckungsgrad (DC): Hoch (99%)

Kategorie nach EN ISO 13849-1:

Der erreichte Performance-Level (PL) ist abhängig von der Mittleren Zeit eines gefahrenbringenden Ausfalls (MTTF_d) jedes Kanals des Gebers und muss vom Hersteller für die Integration zur Verfügung gestellt werden.

MTTF _d pro Kanal	Erreichter Peformance-Level
3 Jahre ≤ MTTFd < 6 Jahre	PL b
6 Jahre ≤ MTTFd < 14 Jahre	PL c
14 Jahre ≤ MTTFd < 62 Jahre	PL d
62 Jahre ≤ MTTFd < 100 Jahre	PL e

Die genauen Daten zur Berechnung des Performance-Levels sind der Norm EN ISO 13849-1 Anhang K zu entnehmen.

5.9.5. Fehlererkennung des GIN-SAC4xX FS bei Anschluss von Sin/Cos-Gebern

Wird zur sicheren Achsenüberwachung ein Sin/Cos-Geber verwendet, überwacht das Safe-AxMonitor Modul der Achse das Signal auf folgende Kriterien:

- Die Signalstärke (sin² + cos²) ist innerhalb der konfigurierten Toleranz
- · Maximaler Geschwindigkeitssprung von 500 Hz zwischen zwei Abtastungen (Nur bei aktiver Sicherheitsunterfunktion)
- · Maximale Stillstandzeit von 24 Stunden (Nur bei aktiver Sicherheitsunterfunktion)

Die folgende Tabelle listet die externen Fehlerfälle auf, welche durch die Überwachung der Signalstärke erkannt werden.

Fehlerfall	Fehlereffekt
Versagen der Energieversorgung für die Lichtquelle	Die Opto-Asics bzw. Fotodioden bekommen keine Signale mehr und es können keine gültigen Sinus- und Cosinus-Signale generiert werden.
Die Lichtquelle ganz oder teilweise defekt (Amplitudenänderung auch durch die Intensi- tätsänderung)	Die Opto-Asics bzw. Fotodioden bekommen keine Signale mehr oder Signale sind abge- schwächt und es können keine gültigen Sinus- und Cosinus Signale generiert werden.
Versagen der Energieversorgung für den Empfänger	Es werden keine gültigen Sinus- und Cosinus Sig- nale generiert.
Fehler eines Signals, entweder die Sinus- oder die Cosinus-Signale sind fehlerhaft.	Das Sinus- oder Cosinus-Signal fällt aus oder gibt ein statisches Signal.
Versagen der Signalleitung vom Empfänger zum Decoder durch Unterbrechung (Draht- bruch)	Das Sin oder Cos-Signal fällt aus.
Versagen der Signalleitung vom Empfänger zum Decoder durch Leitungskurzschluss	Mindestens ein Signal fällt aus oder gibt ein statisches Signal.
Durch externe Erwärmungen oder Unwucht, die den Luftspalt radial zwischen dem Sender und Empfänger beeinflussen können	Sin / Cos Signal beeinflusst oder fehlt komplett
Versagen der Energieversorgung	Geber hat keine Versorgung und liefert keine gültigen Sin / Cos Signale
Sin / Cos Signal am Verstärkerausgang kurzgeschlossen	Undefiniertes Signal wird an Auswerteeinheit übermittelt. Signalfolgeauswertung gestört oder unmöglich.
Unterbrechung eines der Signale in Signalaufbereitung	Nur ein Signal wird an Auswerteeinheit übermit- telt. Signalfolgeauswertung gestört oder unmög- lich.
Fehlendes oder abgeschwächtes Ausgangssig- nal eines der Komplement-Signalpaare (sin+ / sin-) oder (cos+ / cos-)	Sinus- oder Cosinus-Signal in Amplitude in Auswerteeinheit ungleich. Signalfolgeauswertung gestört oder unmöglich.
Verringerung oder Erhöhung der Signalverstär- kung	Amplitude des Sinus- oder Cosinus-Signals zu hoch / zu niedrig. Signalfolgeauswertung gestört oder unmöglich.
Störschwingungen an einem oder an mehreren Ausgängen	Sinus- oder/und Cosinus-Signalform undefiniert verändert

Fehlerfall	Fehlereffekt
Änderung der Phasenverschiebung zwischen Ausgangssignalen	Sinus- oder/und Cosinus-Signalform verschoben durch Fehler in Auswerteeinheit. Signalfolgeaus- wertung je nach Winkel unmöglich.
Statisches Signal an Ein- und Ausgängen, ein- zeln oder an mehreren Signalen, Amplitude im Bereich der Versorgungsspannung	Beide oder ein Signal fällt aus
Statisches Signal an Ein- und Ausgängen, an mehreren Signalen. Amplitude im Bereich der Spannungen bei Geschwindigkeit über 500 Hz	Beide Signale fallen aus
Statisches Signal an Ein- und Ausgängen, ein- zeln. Amplitude im Bereich der Spannungen.	Ein Signal fällt aus
Änderung der Signalform	Verfälschung des Signals, ungültige Werte
Fehler in der Code-scheibe: Beschädigung der Massverkörperung oder Maske	Bei Bruch des Massstabes wird die Schattenopti- sche Modulation nicht oder fehler-haft umge- setzt. Ein Sinus- oder Cosinus-Signal wird nicht generiert.
Fehler in der Code-scheibe: Verschmutzung der Maske oder Massverkörpe- rung	Bei Verschmutzung des Massstabes wird die Schattenoptische Modulation nicht oder fehler- haft umgesetzt. Ein Sinus- oder Cosinus Signal wird nicht generiert.
Massverkörperung löst sich während der Bewegung und liefert ungültiges Signal	Es wird eine falsche Positionsinformation an die Auswerteeinheit übertragen.
Statisches Signal an Ein- und Ausgängen, ein- zeln, Amplitude im Bereich der Spannungsver- sorgung während der Geber-Stillstandphase	Es wird eine falsche Positionsinformation an die Auswerteeinheit übertragen.
Kurzschluss zwischen zwei beliebigen Leitern der Anschlussleitung	Fehlerhafte Messwerte werden geliefert
Unterbrechung eines beliebigen Leiters der Anschlussleitung	Fehlerhafte Messwerte werden geliefert
Statisches "0" oder "1" Signal an Ein- und Ausgängen, einzeln oder an mehreren Ein-/Ausgängen gleichzeitig	Fehlerhafte Messwerte werden geliefert
Unterbrechung oder hochohmiger zustand an einem einzelnen oder an mehreren Ein-/Ausgängen gleichzeitig	Fehlerhafte Messwerte werden geliefert
Verringerung oder Erhöhung der Ausgang- samplitude	Fehlerhafte Messwerte werden geliefert

Die aufgelisteten Fehlerfälle beziehen sich auf Sin-/Cos-Geber mit optoelektronischer Positionserfassung. Wird ein Geber eingesetzt welcher auf anderen physikalischen Prinzipien (Magnetismus) beruht, so ist eine gesonderte Fehleranalyse notwendig. Dafür ist auf jeden Fall Indel zu kontaktieren.

 $Der\ maximale\ Geschwindigkeits sprung\ entspricht\ einer\ Beschleunigung\ von\ 2.5\ MHz/s^2.$

Die Überwachung des Geschwindigkeitssprunges kann auch bei starken Stössen und Schwingungen auf der Achse ansprechen, ohne dass ein Defekt am Geber vorhanden ist.

5.9.6. Anforderungen an die Verwendung von Sin/Cos-Drehgebern

Folgende Tabelle listet die nicht detektierbaren Fehlerfälle von Sin/Cos-Drehgebern. Die Massnahmen in der Spalte ‹Anforderung› sind durch den Anwender oder dem Geberhersteller durchzuführen.

Fehlerfall	Fehlereffekt	Anforderung
Massverkörperung löst sich während der Dreh- bewegung und liefert Signale die nicht pro- portional der Geberro- tation sind.	Keine oder falsche Position/Bewegung wird erfasst	Fehlerausschluss gegen Lösen der Massverkörperung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorgeschriebenen Überbeanspruchung ausgelegt sein.
Massverkörperung löst sich während der Stillstandphase.	Keine oder falsche Position/Bewegung wird erfasst	Fehlerausschluss gegen Lösen der Massverkör- perung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorge- schrieben Überbeanspruchung ausgelegt sein.
Statisches Signal an Ein- und Ausgängen, einzeln oder an mehre- ren Signalen, Amplitude im Bereich der Spannungsversor- gung während der Ge- ber Stillstandphase	Es wird eine falsche Positionsinformation an die Auswerteein- heit übertragen. Während des Still- stands kann der Feh- ler nicht detektiert werden.	Es wird eine Bewegung von mindestens einer Periode innerhalb von 24 Stunden vor oder während der Anforderung einer Sicherheitsunterfunktion gefordert. Die Bewegung muss durch die Applikation oder den Benutzer sichergestellt werden. (Wird vom Sicherheitsmodul überwacht)
Lösen der Wellenver- bindung (Rotor)	Aufgrund eines falschen Gebersignalskann die Drehbewegung kann nicht mehrerfasst werden.	Der Sin / Cos Geber (Rotor) ist mit der Antriebswelle fest zu verbinden. Bei variablen Getrieben oder Riemenantrieben muss der Sin / Cos Geber auf die Lastachse gebracht werden, da in der Regel kein fester Bezug zwischen Antriebsund Lastfunktion besteht. Fehlerausschluss gegen Lösen der Wellenverbindung. Die Wellenverbindung muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein.
Lösen der Drehmo- mentstütze (Stator)	Aufgrund eines falschen Gebersignalskann die Drehbewegung kann nicht mehrerfasst werden.	Fehlerausschluss gegen Lösen der Drehmo- mentstütze. Die Drehmomentstütze muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein. Werden zur Befestigung Schrauben verwendet, muss Der Stator mit mehr als einer Schraube am Gehäuse befestigt werden.
Kurzschluss zu Ausgang eines Phasen- schiebers	Fehler wird nicht de- tektiert. Keine oder falsche Bewegung wird erfasst	Die Verwendung von Phasenschiebern in der Sicherheitskette ist nicht erlaubt.
Vertauschen des Sinus- und Cosinus-Signals	Drehrichtung wird falsch erkannt	Vor der Inbetriebnahme muss die korrekte Sig- nalverdrahtung überprüft werden.

Die Aufdeckung von Fehlern im Geber wird durch die Amplituden und Quadraturprüfung vorgenommen. Es ist nicht zulässig Geber mit synthetisch generierten oder voneinander abgeleiteten Signalen zu verwenden. Sinus- und Cosinus-Signal müssen voneinander unabhängig generiert werden. Falls diese Eigenschaft nicht dokumentiert ist, muss der Hersteller des Gebers kontaktiert werden.

Das Safe-AxMonitor Modul überwacht den Zeitraum des Stillstands vor und während der Anforderung einer Sicherheitsunterfunktion und meldet bei Ablauf der 24 Stunden eine Verletzung der Sicherheitsunterfunktion. Dadurch wird die sichere Impulssperre (STO) ausgelöst.

Bei einem Neustart wird für den Zeitraum des Stillstands 24 Stunden angenommen. Daher muss jede überwachte Achse mit Sin/Cos-Geber vor der ersten Anforderung einer Sicherheitsunterfunktion um mindestens eine Geberperiode bewegt werden. Ein direktes, erstes Aktivieren der Achsen in den Zuständen SLS oder SOS ist nicht möglich.

5.9.7. Anforderungen an die Verwendung von Sin/Cos-Lineargebern

Folgende Tabelle listet die nicht detektierbaren Fehlerfälle von Sin/Cos-Lineargebern. Die Massnahmen in der Spalte Anforderung sind durch den Anwender oder dem Geberhersteller durchzuführen.

Fehlerfall	Fehlereffekt	Anforderung
Massverkörperung löst sich während der Be- wegung und liefert Sig- nale die nicht proporti- onal der Geberrotation sind.	Keine oder falsche Position/Bewegung wird erfasst	Fehlerausschluss gegen Lösen der Massverkörperung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein.
Massverkörperung löst sich während der Stillstandphase.	Keine oder falsche Position/Bewegung wird erfasst	Fehlerausschluss gegen Lösen der Massverkörperung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein.
Statisches Signal an Ein- und Ausgängen, einzeln oder an mehre- ren Signalen, Amplitude im Bereich der Spannungsversor- gung während der Ge- ber Stillstandphase	Es wird eine falsche Positionsinformation an die Auswerteein- heit übertragen. Während des Still- stands kann der Feh- ler nicht detektiert werden.	Es wird eine Bewegung von mindestens einer Periode innerhalb von 24 Stunden vor oder während der Anforderung einer Sicherheitsunterfunktion gefordert. Die Bewegung muss durch die Applikation oder den Benutzer sichergestellt werden. (Wird vom Sicherheitsmodul überwacht)
Lösen der Massstabbe- festigung	Aufgrund eines fal- schen Gebersignals kann die Bewegung kann nicht mehr er- fasst werden.	Fehlerausschluss gegen Lösen der Massverkörperung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein. Werden zur Befestigung Schrauben verwendet, muss die Massverkörperung mit mehr als einer Schraube befestigt werden.

Fehlerfall	Fehlereffekt	Anforderung
Lösen des Abtastwagens	Aufgrund eines fal- schen Gebersignals kann die Bewegung kann nicht mehr er- fasst werden.	Fehlerausschluss gegen Lösen der Massverkör- perung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorge- schriebene Überbeanspruchung ausgelegt sein. Werden zur Befestigung Schrauben verwendet, muss der Abtastwagen mit mehr als einer Schraube befestigt werden.
Statischer Versatz der Massverkörperung	Keine oder falsche Position wird erfasst	Fehlerausschluss gegen Lösen der Massverkörperung. Die Befestigung der Massverkörperung muss auf eine nach DIN EN 61800-5-2 vorgeschriebene Überbeanspruchung ausgelegt sein. Werden zur Befestigung Schrauben verwendet, muss die Massverkörperung mit mehr als einer Schraube befestigt werden.
Kurzschluss zu Ausgang eines Phasenschiebers	Fehler wird nicht de- tektiert. Keine oder falsche Bewegung wird erfasst	Die Verwendung von Phasenschiebern in der Sicherheitskette ist nicht erlaubt.
Vertauschen des Sinus- und Cosinus-Signals	Richtung wird falsch erkannt	Vor der Inbetriebnahme muss die korrekte Sig- nalverdrahtung überprüft werden.

Die Aufdeckung von Fehlern im Geber wird durch die Amplituden und Quadraturprüfung vorgenommen. Es ist nicht zulässig Geber mit synthetisch generierten oder voneinander abgeleiteten Signalen zu verwenden. Sinus- und Cosinus-Signal müssen voneinander unabhängig generiert werden. Falls diese Eigenschaft nicht dokumentiert ist, muss der Hersteller des Gebers kontaktiert werden.

Das Safe-AxMonitor Modul überwacht den Zeitraum des Stillstands vor und während der Anforderung einer Sicherheitsunterfunktion und meldet bei Ablauf der 24 Stunden eine Verletzung der Sicherheitsunterfunktion. Dadurch wird die sichere Impulssperre (STO) ausgelöst.

5.9.8. Kennwerte der sicheren Auswertung von Sin/Cos-Gebern

Wenn die Toleranz der sicheren Position grösser gleich ± ½ Periode ist, ist der Diagnosedeckungsgrad konservativ DC=99%. Sofern alle in diesem Dokument aufgeführten Anforderungen eingehalten werden und eine Signalstärketoleranz von höchstens 40% konfiguriert sind (Standardwert)

Signaltoleranz: ≤ 40% Diagnose-Deckungsgrad (DC): Hoch (99%)

Kategorie nach EN ISO 13849-1: 3

Der erreichte Performance-Level (PL) ist abhängig von der Mittleren Zeit eines gefahrenbringenden Ausfalls (MTTFd) jedes Kanals des Gebers und muss vom Hersteller für die Integration zur Verfügung gestellt werden.

MTTF _d pro Kanal	Erreichter Peformance-Level
3 Jahre ≤ MTTFd < 6 Jahre	PL b
6 Jahre ≤ MTTFd < 14 Jahre	PLc
14 Jahre ≤ MTTFd	PL d

Wird eine Signaltoleranz von zwischen 40% und 50% konfiguriert so wird nur ein DC von mittel erreicht und die daraus folgend nur die Kategorie 2

Signaltoleranz: 40% - 50% Diagnose-Deckungsgrad (DC): Mittel (90%)

Kategorie nach EN ISO 13849-1: 2

MTTF _d pro Kanal	Erreichter Peformance-Level
3 Jahre≤MTTFd<6 Jahre	PLa
6 Jahre ≤ MTTFd < 13Jahre	PL b
13 Jahre ≤ MTTFd < 37 Jahre	PLc
37 Jahre ≤ MTTFd	PL d

Die erreichten Sicherheitskennzahlen sind abhängig vom verwendeten Geber und von der konfigurierten Signaltoleranz.

Eine Bewegung der Achse um eine halbe Periode darf bei aktivierter Funktion SOS nicht zu einer Gefährdung führen.

Eine Bewegung mit überhöhter Geschwindigkeit der Achse um eine halbe Periode darf bei aktivierter Funktion SLS nicht zu einer Gefährdung führen.

Die genauen Daten zur Berechnung des Performance Levels sind der Norm EN ISO 13849-1 Anhang K zu entnehmen.

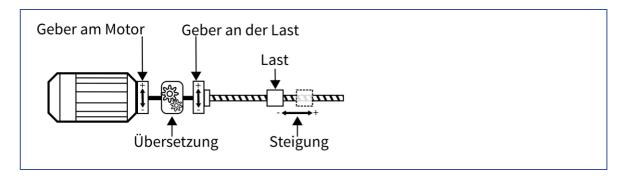
5.9.9. Berechnung der Grenzwerte der Signalstärke

Die Grenzwerte der Signalstärke werden nach der angegebenen Toleranz auf dem Quadrat der Signalstärken gerechnet. Daher gelten die folgenden Grenzwerte welche Überwacht werden.

$$\label{eq:minimale_signalstarke} \textit{Minimale Signalstarke} := \sqrt{\textit{Konfigurierte_Signalstarke}^2 \times \left(1 - \frac{\textit{Toleranz}}{100}\right)}$$

$$Maximale \ Signalst \"{a}rke := \sqrt{Konfigurierte_Signalst \"{a}rke^2 \times \left(1 + \frac{Toleranz}{100}\right)}$$

Die folgende Tabelle zeigt die Grenzwerte für die typischen Toleranzen von 40% und 49% für verschiedene Pegel in 100 mV Schritten.


Konfigurierte	40% Toleranz		49% Toleranz	
Signalstärke [mV]	Minimum	Maximum	Minimum	Maximum
500	387	592	357	610
600	465	710	428	732
700	542	828	500	854
800	620	947	571	977
900	697	1065	643	1099
1000	775	1183	714	1221
1100	852	1302	786	1343
1200	930	1420	857	1465

31.07.2025 Rev 2.1 Seite 64 von 161

5.9.10. Skalierung des Messsystems

Die Skalierung des Messsystems definiert das Verhältnis zwischen dem von Geber gelieferten Bewegungsinformation und der physikalischen Bewegung der Überwachten Achse. Die Konfiguration des Safe-AxMonitor Moduls bietet dazu eine Reihe von Parametern an, welche dieses Verhältnis definieren. Das folgende Diagramm zeigt diese Schematisch.

Wird ein Getriebe oder eine andere Form der Übersetzung verwendet, muss geprüft werden, ob sich der Geber an der Last oder am Motor befindet. Ist der Geber am Motor so muss die Übersetzung konfiguriert werden. Als Steigung muss bei Linearbewegungen die Distanz zu konfigurieren, um welche die Last bei einer Umdrehung der Spindel bewegt. Bei Drehbewegungen ist als Steigung immer entweder 360° oder 1 Umdrehung zu konfigurieren.

Die Geberauflösung wird in (Sinus-)Perioden pro Umdrehung parametrisiert. Wird ein Lineargeber eingesetzt so muss für den Parameter «Perioden pro Umdrehung» die Anzahl der Periode innerhalb einer Steigung der Achse parametrisiert werden.

Perioden pro Umdrehung := Perioden pro Einheit x Steigung[Einheit]

Wird ein Linearmotor eingesetzt, so entspricht die Steigung der Länge einer kompletten Felddrehung des Motors.

Die korrekte Parametrisierung der Skalierung des Messsystems ist bei der Inbetriebnahme durch das Anfahren und Überprüfen mehrerer Positionen zu validieren.

Bei variablen Getrieben oder Riemenantrieben muss der Geber auf die Lastachse gebracht werden, da in der Regel kein fester Bezug zwischen Antriebs- und Lastfunktion besteht. Bei festen Getrieben muss das Getriebe in die Sicherheitsbetrachtung einbezogen werden.

Es ist nicht erlaubt, eine negative Steigung oder Übersetzung zu parametrisieren. Ist die Richtung der Bewegung invers zur Richtung der Signalerfassung, so muss der im Parameter «Richtung» auf «Invertiert» gesetzt werden.

5.9.11. Parameter

Parameter	Einheit	Defaultwert	Beschreibung				
Gruppe ‹Achse	Gruppe 〈Achsenkonfiguration〉 auf Safe-AxControl						
Achse 0	Stummschal- tung / Überwacht	Überwacht	Definiert ob Achse 0 überwacht wird. Wird eine Achse stummgeschalten, haben die Funktionen SLS und SOS keine Wirkung für diese Achse. Hinweis: Nicht vorhandene Achsen müssen expli-				
Achse 1	Stummschal- tung / Überwacht	Überwacht	zit auf «Stummschaltung» konfiguriert werden. Definiert ob Achse 1 überwacht wird. Wird eine Achse stummgeschalten, haben die Funktionen SLS und SOS keine Wirkung für diese Achse. Hinweis: Nicht vorhandene Achsen müssen expli-				
Achse 2	Stummschal- tung / Überwacht	Überwacht	zit auf «Stummschaltung» konfiguriert werden. Definiert ob Achse 2 überwacht wird. Wird eine Achse stummgeschalten, haben die Funktionen SLS und SOS keine Wirkung für diese Achse. Hinweis: Nicht vorhandene Achsen müssen explizit auf «Stummschaltung» konfiguriert werden.				
Achse 3	Stummschal- tung / Überwacht	Überwacht	Definiert ob Achse 3 überwacht wird. Wird eine Achse stummgeschalten, haben die Funktionen SLS und SOS keine Wirkung für diese Achse. Hinweis: Nicht vorhandene Achsen müssen explizit auf «Stummschaltung» konfiguriert werden.				
Gruppe (Achse	nkonfiguration, au	f Safe-AxMonitor					
Geber-Typ	Resolver / SinCos	SinCos	Typ des Gebers welcher überwacht wird.				
Geber- Position	Am Motor / An der Last	An der Last	Definiert, ob sich der Geber an der Motorenachse oder an der Last befindet. Hinweis: Nur relevant, wenn eine Übersetzung ungleich 1 vorhanden ist.				
Richtung	Direkt / Invertiert	Direkt	Definiert das Vorzeichen der berechneten Position und Geschwindigkeit im Verhältnis zur Richtung des Gebers.				
Einheit	Grad / Umdrehung / Meter / Millimeter	Grad	Definiert in welcher Einheit die Steigung der Achse und die Limiten der Sicherheitsunterfunk- tionen normiert sind.				
Perioden pro Umdrehung	#	1	Anzahl der Perioden des Gebers pro Umdrehung des Motors. Bei Linearmotoren ist die Anzahl Perioden pro Felddrehung anzugeben.				
Steigung	Einheit	1	Vorschub der Achse pro Motorumdrehung Hinweis: Die Einheit entspricht dem im Parame- ter ‹Einheit› angegebenen Wert.				
Übersetzung	-	1	Übersetzung zwischen Motorachse und Lastachse. Hinweis: Bei Geberposition ‹An der Last› ist die- ser Parameter gesperrt.				

Parameter	Einheit	Defaultwert	Beschreibung			
Gruppe <signalkonfiguration> auf Safe-AxMonitor</signalkonfiguration>						
Geschwindig- keitsfilter	ms	Kein Filter	Definiert die Zeitspanne über welche das Geschwindigkeitsfilter die Geschwindigkeit mittelt.			
Signalstärke	mV (Spitze zu Spitze)	1000	Maximale Pegeldifferenz des Sinus- bzw. Cosi- nussignals. Hinweis: Bei Geber-Typ ⟨Resolver⟩ ist dieser Parameter gesperrt.			
Signaltole- ranz	%	40	Maximale zulässige Abweichung der Signal- stärke, berechnet auf der Summe der Quadrate: sin²+cos²			

5.10. Implementierte Sicherheitsunterfunktionen

Folgende Sicherheitsunterfunktionen werden von den Modulen Safe-AxControl und Safe-AxMonitor implementiert nach EN ISO 13849-1 PL e und EN 61508/EN 62061 SIL 3.

STO: Safe Torque Off – STO

SOS: Safe Operation Stop - SOS*

· SS1-t: Safe Stop 1 Typ C (Zeitüberwacht)

· SS2-t: Safe Stop 2 Typ C (Zeitüberwacht)*

SLS: Safely Limited Speed*

Für die Unterstützung der mit einem Stern (*) markierten Funktionen wird eine sichere Geberauswertung benötigt.



Die effektiv erreichten Safety Integration Level und Performance Level der Sicherheitsunterfunktionen sind von der verwendeten Peripherie und deren Integration abhängig. Die betrifft insbesondere die Auswahl und Montage von Sicherheitsschaltern und Positionsgebern.

5.10.1. STO: Safe torque off

Mit der Sicherheitsunterfunktion STO wird der Antriebsmotor in einen energielosen Zustand versetzt. Dadurch ist der Motor drehmoment- und somit kraftfrei. Die Energieversorgung wird mittels einer sicheren Impulssperre unterbrochen. Da der Antrieb kein Moment mehr erzeugen kann, kann auch keine Gefahr bringende Bewegung entstehen. Achsen, an denen hängende Lasten vorliegen, müssen zusätzlich gesichert sein. Die Funktionsweise der Implementation der Funktion STO ist in Kapitel 5.3 beschrieben.

Die Funktion STO mit ungesteuertem Stillsetzen wird durch das Setzen einer STO Verzögerungszeit von 0 (Null) im Safe-AxControl Modul konfiguriert. Auslöser der STO Funktion ist entweder das Abfallen des sicheren Eingangs 0 (STO) oder die Unterschreitung der in Parameter «Minimale aktive Stufe» konfigurierten Sicherheitsstufe.

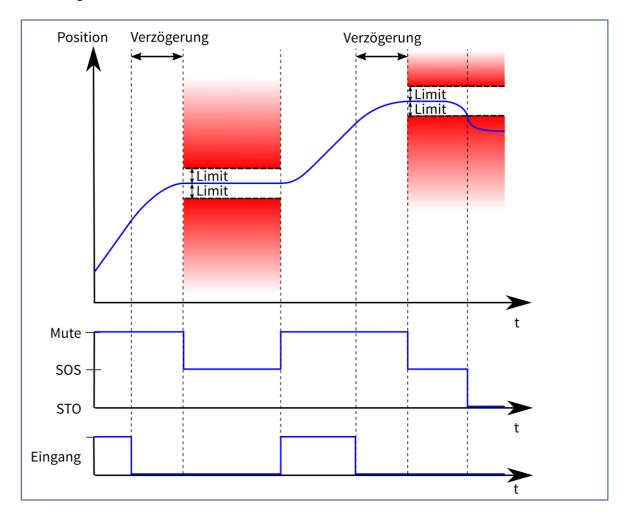
Die Aktivierung der Funktion STO einer sich bewegenden Achse führt zu einem Nachlaufen der Achse, da diese nicht aktiv durch den Motor gebremst wird.

Stellt dies ein Sicherheitsrisiko dar, müssen zusätzliche Vorkehrungen (z.B. mechanische Bremsen) getroffen werden.

In der Funktion STO sind die Motoren momentenlos, und externe Krafteinwirkung können zu einer gefährlichen Bewegung der Achse führen.

Stellt dies ein Sicherheitsrisiko dar, müssen zusätzliche Vorkehrungen (z.B. Haltebremsen) getroffen werden.

Die Funktion STO wirkt immer auf alle Achsen eines GIN-SAC4xX.



Die Funktion STO kann erst verlassen werden, wenn die Ursache der Funktion zurückgesetzt und danach quittiert wurde (Wiederanlaufschutz).

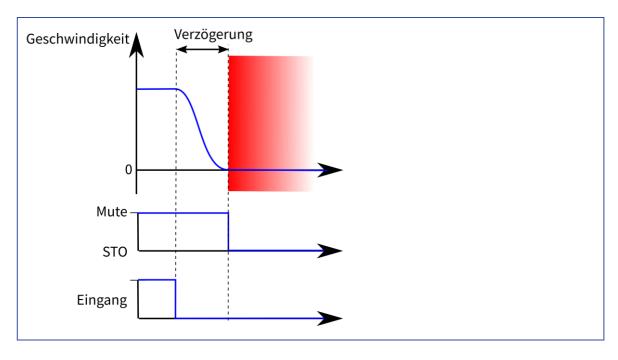
5.10.2. **SOS: Safe operating stop**

Die Funktion SOS überwacht und verhindert das Verlassen des definierten Toleranzbereichs der Halteposition. Die Motorenregelung bleibt in der Funktion aktiv. Dies ermöglicht es dem Motor die Achse auch bei Einwirkung äusserer Kräfte in Position zu halten.

Die Funktion SOS wird durch das Setzen einer der Sicherheitsunterfunktion SOS der geforderten Sicherheitsstufe der Achse im Safe-AxMonitor Modul konfiguriert. Der Toleranzbereich wird durch den entsprechenden Parameter «Limit» gesetzt.

Wird ein Überschreiten des Toleranzbereichs durch eine Achse des GIN-SAC4xX festgestellt, gehen alle Achsen des Drives in den Zustand STO über. Die entsprechenden Sicherheitsbestimmungen der Funktion STO sind für alle Achsen einzuhalten (5.10.1 auf Seite 68).

Eine Überschreitung der Funktion SOS kann nur quittiert werden, wenn die Achse wieder in die Ursprungsposition gebracht wurde, oder wenn die Funktion SOS verlassen wurde.



Bei niedrigen Limiten der sicheren SOS-Position kann es durch Signalrauschen zu fehlerhaften Detektionen von Positionsüberschreitungen kommen. Um dies zu vermeiden, sollte die Auflösung und Übersetzung so gewählt werden, dass das Limit der Position mindestens 5° am Geber beträgt. Das minimal realisierbare Limit kann abhängig von der Signalqualität variieren.

5.10.3. SS1-t: Safe stop 1 Typ C (Zeitverzögert)

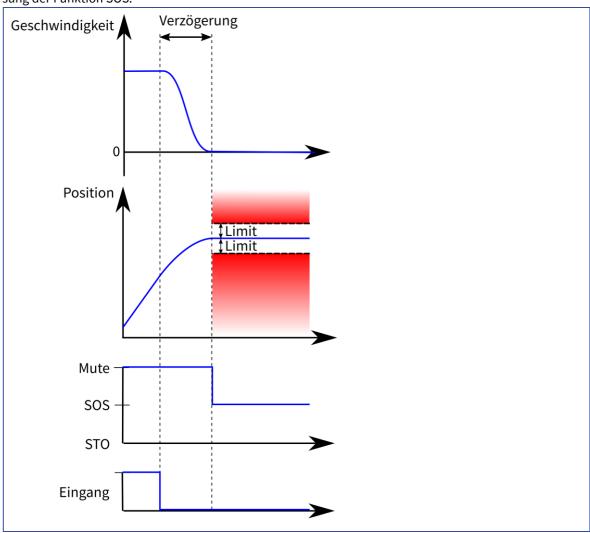
Die Funktion SS1-t implementiert ein gesteuertes Stillsetzen der Achse mit zeitverzögerter Auslösung der Funktion STO.

Die Funktion SS1-t mit gesteuertem Stillsetzen wird durch das Setzen einer STO Verzögerungszeit von grösser 0 (Null) im Safe-AxControl Modul konfiguriert. Auslöser der SS1-t Funktion ist immer das Abfallen des sicheren Eingangs 0 (STO).

Um ein gesteuertes Stillsetzen der Achse zu gewährleisten muss die Verzögerungszeit der maximalen Bremszeit der Achse entsprechen. Die Verzögerungszeit (t) lässt sich aus Bremsbeschleunigung (a) und maximaler Geschwindigkeit (v_{max}) abschätzen.

$$t := v_{max}/a$$

Wird eine zu kurze Zeit konfiguriert, so kann es vorkommen, dass der GINSAC4xX bereits vor dem kompletten Stillstand in den Zustand STO geht. Dies führt zu einem Austrudeln der Achse.



Nach Ablauf der Zeitverzögerung gehen alle Achsen des GIN-SAC4xX in den Zustand STO über. Die entsprechenden Sicherheitsbestimmungen der Funktion STO sind für alle Achsen einzuhalten (5.10.1 auf Seite 68).

5.10.4. SS2-t: Safe stop 2 Typ C (Zeitverzögert)

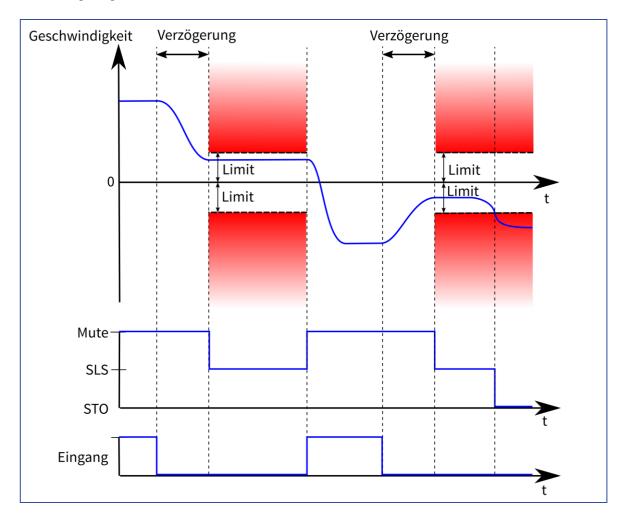
Die Funktion SS2-t Typ C implementiert ein gesteuertes Stillsetzen der Achse mit zeitverzögerter Auslösung der Funktion SOS.

Die Funktion SS2-t mit gesteuertem Stillsetzen wird durch das Setzen einer SOS Verzögerungszeit von grösser 0 (Null) im Safe-AxMonitor Modul konfiguriert. Die Funktion SS2-t wird dann aktiv, wenn die konfigurierte Sicherheitsstufe erreicht wird.

Um ein gesteuertes Stillsetzen der Achse zu gewährleisten muss die Verzögerungszeit der maximalen Bremszeit der Achse entsprechen. Die Verzögerungszeit (t) lässt sich aus Bremsbeschleunigung (a) und maximaler Geschwindigkeit (v_{max})berechnen.

$$t := v_{max} / a$$

Wird ein Überschreiten des Toleranzbereichs durch eine Achse des GIN-SAC4xX festgestellt, gehen alle Achsen des Drives in den Zustand STO über. Die entsprechenden Sicherheitsbestimmungen der Funktion STO sind für alle Achsen einzuhalten (5.10.1 auf Seite 68).



Die Funktion SS2-t wirkt pro Achse. Sie muss für jedes Safe-AxMonitor Module einzeln konfiguriert werden.

5.10.5. SLS: Safely Limited Speed

Die Funktion SLS überwacht und verhindert das Überschreiten einer definierten Geschwindigkeit. Die Motorenregelung bleibt in der Funktion aktiv.

Die Funktion SLS wird durch das Setzen einer der Sicherheitsunterfunktion SLS der geforderten Sicherheitsstufe der Achse im Safe-AxMonitor Modul konfiguriert. Die maximale Geschwindigkeit wird durch den entsprechenden Parameter «Limit» gesetzt.

Wird ein Überschreiten der sicheren Geschwindigkeit durch eine Achse des GIN-SAC4xX festgestellt, gehen alle Achsen des Drives in den Zustand STO über. Die entsprechenden Sicherheitsbestimmungen der Funktion STO sind für alle Achsen einzuhalten (5.10.1 auf Seite 68).

Eine Überschreitung der Funktion SLS kann nur quittiert werden, wenn die Geschwindigkeit Achse wieder in unter die Grenzgeschwindigkeit gefallen ist, oder wenn die Funktion SLS verlassen wurde.

Bei niedrigen Limiten der sicheren langsamen Geschwindigkeiten kann es durch Signalrauschen zu fehlerhaften Detektionen von Übergeschwindigkeit kommen. Um dies zu vermeiden, sollte die Auflösung und Übersetzung so gewählt werden, dass die Eingangsfrequenz des Limits mindestens 1 Hz beträgt. Das minimal realisierbare Limit kann abhängig von der Signalqualität variieren.

5.11. Kennwerte der Sicherheitsunterfunktionen

Die sicherheitstechnischen Kennwerte sind Abhängig von den Sicherheitsmodulen welche für die Implementierung der Sicherheitsunterfunktion benötigt werden. Daher sind die Kennwerte für alle Funktionen ausser STO und SS1-t abhängig von der Anzahl der Achsen des Drives. Die Angegebenen Werte beziehen sich immer auf das komplette Gerät.

5.11.1. Funktionen STO und SS1-t

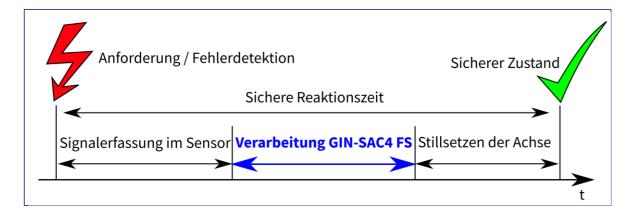
Die Funktionen STO und SS1-t sind direkt auf dem Safe-AxControl implementiert. Sie benötigen keine sichere Achsenauswertung, deshalb ist sind alle Kennwerte für die verfügbaren GINSAC4xX Modelle identisch. Alle Werte sind Maximalwerte, ob diese erreicht werden können ist beschaltungsabhängig.

Kennwert	GIN-SAC4x1 FS, GIN-SAC4x2 FS, GIN-SAC4x3 FS, GIN-SAC4x4 FS
Sicherheitskategorie nach EN ISO 13849-1	Kat 3
Performance Level nach EN ISO 13849-1	PL e
Safety integrity Level nach EN 62061	SIL 3
PFHd (Probability of dangerous Failure per Hour)	3.8 x 10 ⁻⁹ [1/h]
SFF (Safe Failure Fraction)	93.7 %
DC (Diagnosis Coverage)	92.4 %
MTTFd (Mean time to dangerous Failure)	164 [anno]
CCF (Common Cause Failure)	2 %

5.11.2. Funktionen SS2-t, SOS und SLS

Die Funktionen SS2-t, SOS und SLS benötigen eine sichere Achsenauswertung welche auf dem Safe-AxMonitor Modul implementiert ist, deshalb unterscheiden sich einige Kennwerte für die verfügbaren GIN-SAC4xX Modelle. Alle Werte sind Maximalwerte, ob diese erreicht werden können ist beschaltungsabhängig. Insbesondere sind die Hinweise in Kapitel zu beachten.

Kennwert	GIN-SAC4x1 FS	GIN-SAC4x2 FS	GIN-SAC4x3 FS	GIN-SAC4x4 FS
Sicherheitskategorie nach EN ISO 13849-1	Kat 3	Kat 3	Kat 3	Kat 3
Performance Level nach EN ISO 13849-1	PL e	PL e	PL e	PL e
Safety integrity Level nach EN 62061	SIL 3	SIL 3	SIL 3	SIL 3
PFHd (Probability of dangerous Failure per Hour)	9.9 x 10 ⁻⁹ [1/h]	1.7 x 10 ⁻⁸ [1/h]	2.4 x 10 ⁻⁸ [1/h]	3.2 x 10 ⁻⁸ [1/h]
MTTFd (Mean time to dangerous Failure)	92 [anno]	64 [anno]	49 [anno]	40 [anno]
SFF (Safe Failure Fraction)	96.7 %	96.6 %	96.5 %	96.5 %
DC (Diagnosis Coverage)	92.4 %	92.4 %	92.4 %	92.4 %
CCF (Common Cause Failure)	2 %	2 %	2 %	2 %



Für die Ermittlung der effektiven Kennwerte für die komplette Sicherheitskette sind die Kennwerte des Gebers zu berücksichtigen. Hierzu sind die Hinweise in Kapitel 5.9 auf Seite 54 zu beachten.

5.12. Sichere Reaktionszeit

Als sichere Reaktionszeit wird die Zeit von der Anforderung einer Sicherheitsunterfunktion bzw. von der Fehlerdetektion bis zum Eintreten des sicheren Zustandes.

Die Abbildung zeigt die Gesamtreaktionszeit unterteilt in Verzögerungszeiten des Sensors, der Sicherheitsmodule des GIN-SAC4xX FS und des Stillsetzen der Achse.

Alle folgenden Angaben betreffen nur die Reaktionszeit des GIN-SAC4xX FS (Im Diagramm Blau und Fett dargestellt). Für die Betrachtung der sicheren Reaktionszeit ist zwingend die Verzögerung durch die Sensoren und die benötigte Zeit zum Stillsetzen der Achse zu berücksichtigen.

5.12.1. Maximale sichere Reaktionszeit des GIN-SAC4xX

Die maximale Reaktionszeit ist unabhängig der aktiven Sicherheitsunterfunktion und deren Parametrisierung kleiner als 10 ms plus die konfigurierte Verzögerungszeit der Funktion. Die genaue Definition der maximalen Reaktionszeit ist abhängig von der Funktion und deren Parametrisierung. Diese ist in den folgenden Abschnitten zu finden.

Die gesamte sichere Reaktionszeit darf die geforderte sichere Prozesssicherheitszeit (PST) nicht überschreiten.

Die Angegeben Reaktionszeiten gehen immer von einer gefahrenbringenden Situation aus, da ausser bei den Funktionen STO und SS1-t das Sicherheitssystem ansonsten nicht eingreift.

In den folgenden Kapiteln werden die maximalen Reaktionszeiten der einzelnen Sicherheitsunterfunktionen angegeben. Diese müssen nur dann berücksichtigt werden, falls für spezifische Sicherheitsunterfunktionen eine Reaktionszeit von unter 10 ms gefordert sind.

5.12.2. Anforderung der Sicherheitsunterfunktion STO

Die maximale Reaktionszeit der Funktion STO ist 3 275 μs.

5.12.3. Anforderung der Sicherheitsunterfunktion SS1-t

Die maximale Reaktionszeit der Funktion SS1-t ist 3 275 µs plus die konfigurierte Verzögerungszeit.

5.12.4. Anforderung der Sicherheitsunterfunktion SS2-t

Die maximale Reaktionszeit der Funktion SS2-t bzw. die Reaktionszeit auf die Aktivierung von SOS ist 4 075 μs plus die konfigurierte Verzögerungszeit.

5.12.5. Reaktion bei aktiver Sicherheitsunterfunktion SOS

Die maximale Reaktionszeit bei aktiver Funktion SOS ist 3 075 μs.

5.12.6. Anforderung der Sicherheitsunterfunktion SLS

Zur Bestimmung der Reaktionszeit auf die Funktion SLS muss die grössere der folgenden beiden Werte benutzt werden.

- 1. 4 275 μs plus die konfigurierte Verzögerungszeit
- 2. 3 075 µs plus die konfigurierte Geschwindigkeitsfilterzeit

5.12.7. Reaktion bei aktiver Sicherheitsunterfunktion SLS

Die maximale Reaktionszeit bei aktiver Funktion SLS ist 3 075 μ s plus die konfigurierte Geschwindigkeitsfilterzeit.

5.12.8. Reaktion bei Versagen des Gebers (bei Bewegung)

Sofern sich die Achse bewegt ist die maximale Reaktionszeit auf das Versagen des Gebers 3 075 µs ab dem Durchlaufen von einer halben Geberperiode.

Da sich einige Fehler nur in gewissen Bereichen der Geberperioden erkennbar sind, darf eine Bewegung von maximal einer halben Geberperiode nicht zu einer Gefährdung führen.

Die von der Anwendung geforderte sichere Reaktionszeit muss grösser sein als die Reaktionszeit bei Versagen des Gebers.

5.12.9. Reaktion auf Ringschaltung

Die maximale Reaktionszeit der Ringschaltung ist 3 275 μs pro Drive im Ring.

5.13. Voraussetzungen für den Einsatz der Sicherheitsmodule

Der Einsatz der Safe-AxControl und Safe-AxMonitor Modulen ist nur innerhalb eines funktionstüchtigen Steuerungssystem von Indel möglich. Dieses muss mindestens die Bedingungen an die Software erfüllen:

- · «INOS» (Indel Realtime-OS) Revision 2.14.2.7471 oder höher
- · «GIN-SAC4xX» Motorsystem Revision 7.4.6.1040 oder höher
- · «Indel Safety Configurator» Revision 1.0.0.133 oder höher
- · «Indel Tools Setup» Revision 16.11 oder höher
- · «INCOServer V» (Indel Connectivity Server) Revision 1.0.0 oder höher

Das Fehlen der Systemvoraussetzungen verhindert die Konfiguration der Sicherheitsmodule. Diese bleiben im Konfigurationszustand, was den Betrieb verunmöglicht.

5.14. Modulzustände

Folgende Tabelle zeigt alle Hauptzustände welche die Sicherheitsmodule einnehmen können.

Zustand	Nummer	Beschreibung	Sicherer Zustand
Startup	0	Initialisierung und initialer Test des Moduls	Ja
Configuring	1	Konfiguration des Moduls	Ja
Operating	2	Betriebszustand	Nein
Error	3	Standard-Fehlerzustand	Ja
Fatal	4	Fataler-Fehlerzustand	Ja

In der Folge werden die einzelnen Zustände erklärt. Die Spalte Fail-Safe definiert in welchen Zuständen das Modul den sicheren Zustand einnimmt.

5.14.1. **Zustand Startup**

Nach Erreichen der Betriebsspannung oder einem Reset des Moduls wird die Hardware des Moduls initialisiert und getestet. Ausgenommen sind Komponenten welche von der Konfiguration abhängig sind.

5.14.1.1 Unterzustände

Keine.

5.14.2. **Zustand Configuration**

Im Zustand (Configuration) wird die komplette Konfiguration des Moduls inklusive der Verifikation der Konfiguration durchgeführt. Es werden diejenigen Komponenten initialisiert welche von der Konfiguration abhängig sind.

5.14.2.1 Unterzustände

Unterzu- stände	Nummer	Beschreibung	
Startup	0	Das Modul liest die Konfigurations-Historie aus dem internen Spei- cher	
Waiting	1	Das Modul wartet bis die Konfiguration im Speicher des GINSAC4xX FS bereit liegt	
Verifying	2	Das Modul wartet auf die Freigabe der Konfiguration durch den Anwender	
Updating	3	Die neue Konfiguration wird in die Konfigurations-Historie abgelegt	
Configured	4	Das Modul ist Konfiguriert	
Unconfigured	5	Das Modul ist als unkonfiguriert markiert	
Error	6	Es wurde ein Fehler in der Konfiguration detektiert	

Die Zustände (Verifying) und (Updating) werden nur durchlaufen, wenn das Modul eine neue Konfiguration geladen hat. Eine Konfiguration ist dann neu, wenn sie sich von der letzten verifizierten Konfiguration unterscheidet.

5.14.3. **Zustand Operating**

Der Zustand ‹Operating› entspricht dem Betriebszustand der Module. Sichere Ausgänge sowie die Freigabe der Impulssperre sind nur in diesem Zustand aktivierbar. Das Prozessabbild der Ein- und Ausgänge (inklusiv Geberauswertung) wird nur in diesem Zustand berechnet.

5.14.3.1 Unterzustände

Die Unterzustände des Zustands Operating sind Modulabhängig.

Unterzustände des Moduls Safe-AxControl

Unterzustände	Nummer	Beschreibung
Connecting	0	Das Modul startet die Kommunikation zu allen konfigurierten Safe-AxMonitor Modulen. Es wartet bis die Kommunikation
		zu allen Modulen steht.
Waiting for Power	1	Das Modul wartet bis die Versorgung der sicheren Ausgänge die Betriebsspannung erreicht hat
Ready	2	Das Modul wartet auf die Freigabe durch die Ringschaltung
Active	3	Die Impulssperre ist freigegeben (deaktiviert), eine Aktivierung der Achsen ist möglich.
StoDelay	4	Die Funktion STO mit Zeitverzögerung (SS1-t) wurde aktiviert, das Modul wartet auf den Ablauf der Verzögerungszeit
Sto	5	Das Modul hat nach der Anforderung der STO Funktion die Impulssperre aktiviert.
Error	6	Es wurde ein Fehler detektiert

Der Zustand (Ready) wird nur bei konfigurierter Ringschaltung erreicht.

Unterzustände des Safe-AxMonitor

Unterzustände	Nummer	Beschreibung	
Not-Ready	0	Die sichere Geberauswertung ist nicht bereit	
Ready	1	Die sichere Geberauswertung ist bereit	

5.14.4. **Zustand Error**

Wird ein Fehler in der Beschaltung, der Konfiguration oder der Hardware detektiert, so geht das Modul in den Zustand (Error). Das Modul kann nur durch einen Neustart (Reset) den Zustand verlassen.

Bei Auftreten von Fehlern muss eine Ursachenanalyse durchgeführt werden. Wird festgestellt, dass bei einem sicherheitsrelevanten Bauteil oder Gerät ein Defekt vorliegt, muss der Betrieb der Applikation unmittelbar eingestellt werden und das komplette Gerät ersetzt werden.

Fehlerzustände werden vom funktionalen Steuerungssystem ausgelesen und können mit dem Indel Cockpit angezeigt und bestätigt werden.

5.14.4.1 Unterzustände

Keine.

5.14.5. Zustand Fatal

Der Zustand (Fatal) wird vom Modul dann eingenommen, wenn ein Fehler detektiert wird, welcher eine korrekte Weiterführung des Programmablaufs verhindert. Dies sind insbesondere Ausfälle des Mikrokontrollers oder Verlust der Speisung.

Bei Auftreten von fatalen Fehlern muss eine Ursachenanalyse durchgeführt werden. Wird festgestellt, dass bei einem sicherheitsrelevanten Bauteil oder Gerät ein Defekt vorliegt, muss der Betrieb der Applikation unmittelbar eingestellt werden und das Bauteil ersetzt werden.

Fehlerzustände werden vom funktionalen Steuerungssystem ausgelesen und können mit dem Indel Cockpit angezeigt und bestätigt werden.

5.14.5.1 Unterzustände

Keine.

5.15. Fail-Safe Zustände

Die Sicherheitsmodule sind so aufgebaut, dass sie bei Inaktivität von sich aus in den sicheren Zustand gehen. Dies ist auf dem Safe-AxControl Modul dadurch implementiert, dass alle sicherheitsrelevanten Ausgänge durch eine Schaltung gespiesen werden, welche ohne Anregung abfällt. Der sichere Zustand auf dem Safe-AxMonitor Modul wird dann eingenommen, wenn das Modul nicht mehr auf Anfragen des Safe-AxControl Moduls antwortet.

Geht ein als überwacht konfiguriertes Safe-AxMonitor Modul eines Drives in einen Fail-Safe Zustand, geht das Safe-AxControl Modul des Drives ebenfalls in den Fail-Safe Zustand «Error».

In allen Fail-Safe-Zuständen ist die Impulssperre aktiv. Alle von diesem Drive angesteuerten Motoren sind momentenlos. Der sichere Ausgang ist auf ‹tief› (0 V) geschaltet.

5.16. Sicherheitsstufen

Die Sicherheitsmodule des GIN-SAC4xX FS ermöglichen es, bis zu 8 Sicherheitsstufen zu definieren. Pro Sicherheitsstufe kann pro Achse bzw. pro Safe-AxMonitor Module eine Sicherheitsunterfunktion konfiguriert werden.

Die angeforderte Sicherheitsstufe wird im Safe-AxControl Modul berechnet und wirkt auf den gesamten Drive. Die aktuelle Sicherheitsunterfunktion (ausser STO) wird im Safe-AxMonitor Modul bestimmt und wirkt pro Achse.

Das Safe-AxControl Module errechnet die aktuelle Sicherheitsstufe anhand der Zustände der Eingänge 1 - 3. Es stehen zwei Auswahlverfahren zur Bestimmung der Sicherheitsstufen zur Verfügung. Diese wird durch den Parameter Sicherheitsstufen-Auswahl der Konfiguration des Safe-AxControl Moduls bestimmt.

5.16.1. Prioritäre Auswahl

Eingang 1	Eingang 2	Eingang 3	Sicherheitsstufe
tief	tief	tief	0
hoch	tief	tief	1
tief	hoch	tief	2
hoch	hoch	tief	2
tief	tief	hoch	3
hoch	tief	hoch	3
tief	hoch	hoch	3
hoch	hoch	hoch	3

Die prioritäre Bestimmung der Sicherheitsstufe eignet sich insbesondere für das direkte Anschliessen von kaskadierten Schutzeinrichtungen. In der folgenden Tabelle ist ein fiktives Beispiel für eine Beschaltung.

Eingang	Schutzeinrichtung		
1	Zustimmtaster		
2	Lichtgitter		
3	Kontaktschalter der Schutzhaube		

Die Schutzeinrichtungen müssen immer nach ihrer Wirksamkeit geordnet an die Eingänge angeschlossen werden und zwar so, dass die Schutzeinrichtung mit der kleinsten Wirkung auf Eingang 1 angeschlossen ist.

5.16.2. Binäre Auswahl

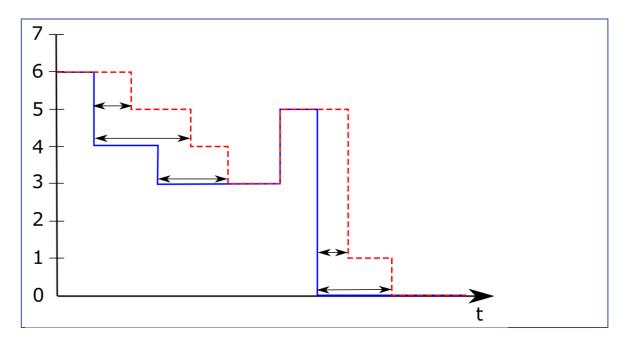
Ist die prioritäre Auswahl konfiguriert, entspricht die angeforderte Sicherheitsstufe dem Wert der Eingänge als Binäre Zahl gebildet aus den Signalen:

Sicherheitsstufe := Eingang[1] + Eingang[2] \times 2 + Eingang[3] \times 4

Die folgende Tabelle zeigt die angeforderte Sicherheitsstufe in Abhängigkeit der Eingangssignale der sicheren Eingänge:

Eingang 1	Eingang 2	Eingang 3	Sicherheitsstufe
tief	tief	tief	0
hoch	tief	tief	1
tief	hoch	tief	2
hoch	hoch	tief	3
tief	tief	hoch	4
hoch	tief	hoch	5
tief	hoch	hoch	6
hoch	hoch	hoch	7

5.16.3. Parameter


Parameter	Einheit	Defaultwert	Beschreibung
Gruppe (Gener	elle Konfiguration>	auf Safe-AxContr	ol
Sicherheits- stufen-Aus- wahl	Prioritär / Binär	Prioritär	Definiert ob die aktive Sicherheitsstufe nach Pri- orität der Eingänge oder als Binärwert der Ein- gänge berechnet wird.

5.17. Aktive Sicherheitsunterfunktion

Die aktive Sicherheitsunterfunktion wird durch die aktuelle Sicherheitsstufe und die Konfiguration dieser Stufe definiert. Es kann für jede Achse und für jede Stufe eine Funktion konfiguriert werden.

Die konfigurierten Verzögerungszeiten werden dabei für jede Sicherheitsunterfunktion einzeln gemessen. Daher kann es bei einem Wechsel von einer höheren zu einer tieferen Stufe zu mehreren Wechseln der aktiven Sicherheitsunterfunktion kommen.

Die blaue durchgezogene Linie stellt die berechnete Sicherheitsstufe dar. Die rote gestrichelte Linie zeigt die aktive Sicherheitsunterfunktion. Die Pfeile zeigen jeweils die Dauer der konfigurierten Verzögerungszeit der entsprechenden Funktion. Hat eine tiefere Stufe eine kürzere Verzögerungszeit als eine höhere, so wird direkt auf die tiefere Stufe gewechselt.

Wechsel auf höhere Stufen erfolgen immer direkt ohne Verzögerung.

Wird eine Funktion durch die Überwachung einer Schutzeinrichtung (z.B. Haube, Lichtgitter) ausgelöst, so muss zwischen Schutzeinrichtung und Gefahrenbereich ein Sicherheitsabstand bestehen, welcher das Erreichen des Gefahrenbereichs innerhalb der Verzögerungszeit verhindert.

5.17.1. Parameter

Parameter	Einheit	Defaultwert	Beschreibung
Gruppe (Gener	elle Konfiguration> aut	f Safe-AxControl	
Minimale aktive Stufe	-	0	Minimale Sicherheitsstufe damit der Drive aktiv ist. Für alle kleineren Sicherheitsstufen wird die Funktion STO/SS1-t (nach parametrisierter Verzögerung) ausgelöst.
Gruppe <zeitkonfiguration> auf Safe-AxControl</zeitkonfiguration>			
STO-Verzöge- rungszeit	ms	0	Verzögerung von der Anforderung der Funktion STO/SS1-t bis zum Aktivieren der Impulssperre.

Parameter	Einheit	Defaultwert	Beschreibung		
Gruppe (Gener	Gruppe 〈Generelle Konfiguration〉 auf Safe-AxControl				
Gruppe < Sicher	heitsstufe X> (wobei X	:= 0 bis 7) auf Safe	e-AxMonitor		
Sicherheits- unterfunk- tion	Stummschaltung / SLS / SOS	Stumm- schaltung	Sicherheitsunterfunktion der entsprechenden Sicherheitsstufe. Bei Stummschaltung wird für diese und alle höheren Stufen keine Sicherheitsunterfunktion überwacht. Hinweis: Dieser Parameter ist gesperrt wenn eine tiefere Stufe auf «Stummschaltung» konfiguriert ist.		
Grenze	Einheit/s (Bei SLS) Einheit (Bei SOS)	0	Limit der konfigurierten Sicherheitsunterfunktion. Bei SOS: Maximale Distanz zur Position bei Aktivierung. Bei SLS: Maximale zugelassene Geschwindigkeit. Hinweis: Die Einheit entspricht dem im Parameter (Einheit) angegebenen Wert.		
Verzögerung	ms	0	Verzögerungszeit zwischen dem Wechsel von einer höheren Stufe auf diese Stufe und dem aktivieren der konfigurierten Sicherheitsun- terfunktion.		

5.18. Error-Codes

Die folgende Tabelle ist eine komplette Auflistung aller Fehler-Codes welche durch die Sicherheitsmodule ausgegeben werden.

Nr	Fehler	Beschreibung	Wahrscheinliche Ursache
Interne Hardware Fehler		Fehler des Microcontrollers	
0	ОК	Kein Fehler	Kein Fehler
1	AllHwStackFailOverflow	Memory-Stack Überlauf vor Initialisierung	Software-Fehler
2	AllHwStackFailInit	Startup Memory-Stack Test konnte nicht initialisiert werden Software	
3	AllHwStackFailInitTest	Memory-Stack-Überlauf bei Startup detektiert	
4	AllHwStackFailSetup	HwStackFailSetup Initialisierung des periodischen Stack-Test fehlgeschlagen Sc	
5	AllHwStackFail	Memory-Stack-Überlauf bei periodischem Test detektiert	Software-Fehler
6	AllHwCPUFailInit	CPU-Fehler bei Startup detektiert	Software-Fehler
7	AllHwCPUFailFirst	Startup CPU Test konnte nicht abgeschlossen werden Hardware-	
8	AllHwCPUFail	CPU-Fehler bei periodischem Test detektiert Hardware-D	
9	AllHwMemoryFailInit	Memory Fehler bei Startup Test detektiert	Hardware-Defekt
10	AllHwMemoryFailSetup	Initialisierung des periodischen Memory-Test fehlgeschlagen	Software-Fehler
11	AllHwMemoryFail	Memory Fehler bei periodischem Test detektiert	Hardware-Defekt
12	AllHwFirmwareFailInit Firmware Fehler bei Startup detektiert Hardware-		Hardware-Defekt
13	AllHwFirmwareFailSetup	FirmwareFailSetup Initialisierung des periodischen Firmware-Test fehlgeschlagen Software-Fehler	
14	AllHwFirmwareFail	Firmware Fehler bei periodischem Test detektiert Hardware-Defekt	
15	CpuBDevHwRevInputs	Hardware Revision Inputs haben die Falsche Beschaltung Hardware-Defekt	

Nr	Fehler	Beschreibung	Wahrscheinliche Ursache
Synchronisations-Fehler		Fehler der Synchronität zwischen den beiden Controller eines M	oduls
20	CtrlSynchSafetyState Safety State zwischen CPU A und B unterschiedlich		Folgefehler
21	AllSynchSchedState	Scheduler State zwischen A und B unterschiedlich	Folgefehler
22	AllSynchTwin	Zyklus Synchronisation fehlgeschlagen	Folgefehler
23	AllSynchClock	Zykluszeiten zwischen A und B unterschiedlich	Hardware-Defekt
24	AllSetClockFail	Systemuhr konnte nicht korrekt konfiguriert werden	Hardware-Defekt
Inter	rne Communikations-Fehler	Fehler in der Communikation zwischen den beiden Controllern	
30	AllIntCommDma13Enabled	SPI-DMA 1 Stream 3 konnte nicht rechtzeitig ausgeschalten werden	Folgefehler
31	AllIntCommDma14Enabled	SPI-DMA 1 Stream 4 konnte nicht rechtzeitig ausgeschalten werden	Folgefehler
32	CpuAIntCommToXInput	Timeout beim Warten auf den Chip-Select Input in SPIExchange	Folgefehler
33	CpuAIntCommToXTx	Timeout während der Übertragung in SPI-Exchange	Folgefehler
34	AllIntCommToXRx	Timeout während dem Empfang in SPI-Exchange	Folgefehler
35	CpuAIntCommToIntInput	Timeout beim Warten auf den Chip-Select Input Start-DMA	Folgefehler
36	AllIntCommToIntTx	Timeout während der Übertragung in SPI-DMA	Folgefehler
37	CpuAIntCommToExtInput	Timeout beim Warten auf den Chip-Select Input Start-DMA bei Übertragung von externen Daten	Folgefehler
38	AllIntCommToExtTx	Timeout während der Übertragung in SPI-DMA bei Übertragung von externen Daten	Folgefehler
39	AllIntCommToExtRx	Timeout während dem Empfang in SPI-DMA bei Übertragung von externen Daten	Folgefehler
40	AllIntCommExtAddressMis- match	Adresse der externen Daten zwischen CPU A und B unterschiedlich	Folgefehler
41	MoniDevScDma20Enabled	SPI-DMA 2 Stream 0 konnte nicht rechtzeitig ausgeschalten werden	Folgefehler
42	CtrlintComminputs	Fehler in der Übertragung der sicheren Eingangswerte	Folgefehler
Exte	rne Kommunikations-Fehler	Fehler in der Kommunikation zwischen Controller A und dem GI	N-SAC4
50	CpuAExtCommDma12Enabled	SPI-DMA 1 Stream 2 konnte nicht rechtzeitig abgeschaltet werden	Folgefehler
51	CpuAExtCommDma15Enabled	SPI-DMA 1 Stream 5 konnte nicht rechtzeitig abgeschaltet werden	Folgefehler
52	CtrlMoniCommTo	Verbindung Timeout zu Safe-AxMonitor Modul	Folgefehler
53	CpuAExtCommToDmaFinished	Timeout während der Übertragung in SPI-DMA bei Übertragung von externen Daten	Folgefehler
54	CtrlExtCommRandomNumber	Fehler bei der Generierung von Zufallszahlen für das sichere Protokoll	Hardware-Defekt
Sche	eduler-Fehler	Fehler im Ablauf des Schedulers	
55	CtrlDevInpTestIncomplete	InputsDevice Tests wurden innerhalb einer Stunde nicht komplett durchgeführt.	Software-Fehler
56	CtrlDevOutTestIncomplete	OutputDevice Tests wurden innerhalb einer Stunde nicht komplett durchgeführt.	Software-Fehler
57	CtrlDevStoTestIncomplete	StoDevice Tests wurden innerhalb einer Stunde nicht komplett durchgeführt.	Software-Fehler
58	CtrlDevFsTestIncomplete	FailSafeDevice Tests wurden innerhalb einer Stunde nicht komplett durchgeführt.	Software-Fehler
59	MoniDevScTestIncomplete	SinCosDevice Tests wurden innerhalb einer Stunde nicht komplett durchgeführt.	
60	AllSchedTestMaxCycState	Anzahl Zyklen pro Scheduler-Schritt überschritten	Software-Fehler
61	AllSchedTestMaxCycLoop	Anzahl Zyklen pro Scheduler-Durchlauf überschritten	Software-Fehler
62	AllSchedTestIncomplete	Anzahl Zyklen für kompletter Modultest überschritten	Software-Fehler
63	AllMgrCtTestIncomplete	CpuTestManager Tests wurden innerhalb einer Stunde nicht komplett durchgeführt	
64	AllDevPomTestIncomplete	PowerMonitoringDevice Tests wurden innerhalb einer Stunde Software-Fe nicht komplett durchgeführt	
	AllMgrRpTestIncomplete	ReportingManager Tests wurden innerhalb einer Stunde nicht	Software-Fehler
65		komplett durchgeführt	

Nr	Fehler	Beschreibung	Wahrscheinliche Ursache	
Software-Fehler		Durch defensive Programmierung abgefangene Programmierfehler		
70	MoniMgrAmSafetyLevel	Zu hoher Sicherheitsstufe angefordert	Software-Fehler	
71	AllMgrConfigState	Konfigurationsmanager befindet sich in ungültigem Zustand	Software-Fehler	
72	CtrlMgrImcState	Inter-Modul-Kommunikations-Manager befindet sich in ungültigem Zustand	Software-Fehler	
73	AllDevPomInit	Fehler in der Initialisierung des Power-Monitoring-Devices	Software-Fehler	
74	AllMgrRpState	Reporting-Manager befindet sich in ungültigem Modul-Zustand	Software-Fehler	
75	CpuAMgrRpStep	Reporting-Manager befindet sich in ungültigem Zustand (schritt)	Software-Fehler	
76	MoniDevResInit	Fehler in der Initialisierung des Resolver-Devices	Software-Fehler	
77	MoniDevScInit	Fehler in der Initialisierung des SinCos-Devices	Software-Fehler	
78	MoniDevScNonexQuad	Inexistenter Quadrant im Encoderwert	Software-Fehler	
79	CtrlSelectionConfigError	Selektierungsart hat einen ungültigen wert.	Software-Fehler	
80	MoniResSpeedFilterSize	Resolver Geschwindigkeitsfilter hat eine ungültige Grösse	Software-Fehler	
81	MoniResNonPosTimeDiff	Zeitdifferenz zwischen zwei Messungen ist nicht positiv	Software-Fehler	
82	AllStartupErrorSize	Buffergrösse der Fehlerwerte wurde im Startup überschritten	Software-Fehler	
Konfig	urations-Fehler	Fehler in der Konfiguration		
90	AllConfigLengthWrong	Datenlänge der Konfiguration ist falsch	Konfigurations-Fehler	
91	AllConfigCrcWrong	CRC der Konfiguration ist falsch	Konfigurations-Fehler	
92	AllConfigProductIdWrong	Produkt ID in der Konfiguration ist falsch (Konfiguration ist nicht für diesen Modultyp)	Konfigurations-Fehler	
93	AllConfigVersionWrong	Version der Konfiguration wird nicht unterstützt	Konfigurations-Fehler	
94	AllConfigFieldbusPosWrong	Konfigurierte Feldbusposition stimmt nicht mit tatsächlicher Position überein	Konfigurations-Fehler	
95	AllConfigContainerDama- ged	Gespeicherte Konfigurationsdaten wurden beschädigt	Soft-RAM-Fehler	
96	MoniConfigAxisNumber	Konfigurierte Achsennummer stimmt nicht mit tatsächlicher Achsennummer überein	Konfigurations-Fehler	
97	MoniConfigInvalidLimit	Konfigurierte Limite einer Sicherheitsunterfunktion ist ungültig	Konfigurations-Fehler	
98	MoniConfigInvalidSafety- Function	Ungültige Sicherheitsfunktion konfiguriert	Konfigurations-Fehler	
99	MoniConfigInvalidTole- rance	Konfigurierte Signaltoleranz ungültig	Konfigurations-Fehler	
100	MoniConfigInvalidSig- nalStrength	Konfigurierter Signalpegel ungültig	Konfigurations-Fehler	
Hardwa	are-Trap-Fehler	Prozessor hat einen Trap-Interrupt ausgelöst		
110	AllCycleOverrun	SystemClock Interupt hat den Watchdog ausgelöst	Software-Fehler	
111	AllTrapNmi	Nicht maskierbarer Interrupt ist aufgetreten	Software-Fehler	
112	AllTrapHardFault	Hard-Fault-Interrupt ist aufgetreten	Software-Fehler	
113	AllTrapMemManage	Speicherverwaltungs-Fehler-Interrupt ist aufgetreten	Software-Fehler	
114	AllTrapBusFault	Busfehler-Interrupt ist Interrupt ist aufgetreten	Software-Fehler	
115	AllTrapUsageFault	Prozessorbenutzungs-Fehler ist aufgetreten	Software-Fehler	
Speisu	ngs-Fehler	Spannungsmessung hat einen Speisungsfehler entdeckt		
120	AllPowerError24VTooLow	24 Volt Speisung zu niedrig	Beschaltungsfehler	
121	AllPowerError24VTooHigh	24 Volt Speisung zu hoch	Beschaltungsfehler	
122	AllPowerError3_3VTooLow	3.3 Volt Speisung zu niedrig	Hardware-Defekt	
123	AllPowerError3_3VTooHigh	3.3 Volt Speisung zu hoch	Hardware-Defekt	
124	AllPowerErrorGNDTooHigh	Masse Messung zu hoch	Hardware-Defekt	
125	AllAdcMalfunction	ADC Fehlfunktion Hardware		
126	AllAdc24VDiffTooLarge	Spannungsmessung von CPU A und CPU B hat zu grosse Differenz Hardware-Defe		
127	CtrlAdcSafe24VDif-	Spannungsmessung der Safe24V von CPU A und CPU B hat zu Hardware-Defekt		
128	fTooLarge CtrlPowerErrorVRefIntToo- Low	grosse Differenz Spannungsmessung der internen Referenz ist zu tief	Hardware-Defekt	
129	CtrlPowerErrorVRefIntToo- High	Spannungsmessung der internen Referenz ist zu hoch	Hardware-Defekt	

Nr	Fehler	Beschreibung	Wahrscheinliche Ursache
Flash-	Fehler	Fehler des internen Flash-Speichers	
130	AllFlashReadError	Fehler beim Lesezugriff auf das Flash	Software-Defekt
131	AllFlashEraseError	Fehler beim Löschen eines Flash-Sektors	Hardware-Defekt
132	AllFlashWriteError	Fehler beim Schreibzugriff auf das Flash	Hardware-Defekt
Safe-A	xControl Hardware-Fehler	Hardware-Fehler des Safe-AxControl Moduls	
140	Ctrlinputinternal	Interner Input-Test hat einen Fehler detektiert	Hardware-Defekt
141	CtrlInputExternalFB	Testpuls Ausgang ist ‹hoch› obwohl ausgeschaltet	Beschaltungsfehler
142	CtrlInputExternal0	Externer Input-Test hat einen Fehler am Eingang 0 detektiert	Beschaltungsfehler
143	CtrlInputExternal1	Externer Input-Test hat einen Fehler am Eingang 1 detektiert	Beschaltungsfehler
144	CtrlInputExternal2	Externer Input-Test hat einen Fehler am Eingang 2 detektiert	Beschaltungsfehler
145	CtrlInputExternal3	Externer Input-Test hat einen Fehler am Eingang 3 detektiert	Beschaltungsfehler
146	CtrlInputInconsistent0	Abweichung zwischen den Kanälen eines Eingangs 0 festgestellt	Beschaltungsfehler
147	CtrlInputInconsistent1	Abweichung zwischen den Kanälen eines Eingangs 1 festgestellt	Beschaltungsfehler
148	CtrlInputInconsistent2	Abweichung zwischen den Kanälen eines Eingangs 2 festgestellt	Beschaltungsfehler
149	CtrlInputInconsistent3	Abweichung zwischen den Kanälen eines Eingangs 3 festgestellt	Beschaltungsfehler
150	CtrlOutputInternalOf-	Interner Output-Test hat bei ausgeschaltetem Ausgang eine zu	Hardware-Defekt
	fIsHigh	hohe Spannung detektiert	
151	CtrlOutputExternalOffToo- High	Externer Output-Test hat bei ausgeschaltetem Ausgang eine zu hohe Spannung detektiert	Beschaltungsfehler
152	CtrlFailSafeNoDrop	Fail-Safe Spannung ist bei Fail-Safe-Test nicht gefallen	Hardware-Defekt
153	CtrlFailSafeSkip	Fail-Safe Test konnte zu oft nicht durchgeführt werden	Beschaltungsfehler
154	CtrlSafe24VDiffTooLarge	Spannungsabfall über die Fail-Safe-Schaltung ist zu gross	Hardware-Defekt
155	CtrlSafe24VCycleTime- TooLarge	Zeit zwischen Fail-Safe Spannungsüberwachungs-Tests ist zu gross	Software-Fehler
156	CtrlStoOnTooLow	STO Spannung ist im eingeschalteten Zustand zu tief	Hardware-Defekt
157	CtrlStoOnTooHigh	STO Spannung ist im eingeschalteten Zustand zu hoch	Hardware-Defekt
158	CtrlStoTestTooLow	STO Spannung ist während Testimpuls zu tief	Hardware-Defekt
159	CtrlStoTestTooHigh	STO Spannung ist während Testimpuls zu hoch	Hardware-Defekt
160	CtrlStoOffTooHigh	STO Spannung ist im ausgeschalteten Zustand zu hoch	Hardware-Defekt
161	CtrlFailSafeInitHigh	Initialer Fail-Safe Test hat einen Fehler detektiert	Hardware-Defekt
162	CtrlOutputInternalPul- seIsHigh	Interner Output-Test hat während dem Pulstest eine zu hohe Spannung detektiert	Hardware-Defekt
163	CtrlOutputExternalPul- seIsHigh	Externer Output-Test hat während dem Pulstest eine zu hohe Spannung detektiert	Beschaltungsfehler
164	CtrlOutputInternalOnIsLow	Interner Output-Test hat bei eingeschaltetem Ausgang eine zu niedrige Spannung detektiert	Hardware-Defekt
165	CtrlOutputExternalOnToo- Low	Externer Output-Test hat bei eingeschaltetem Ausgang eine zu niedrige Spannung detektiert	Beschaltungsfehler
166	CtrlOutputExternalOnToo- High	Externer Output-Test hat bei eingeschaltetem Ausgang eine zu hohe Spannung detektiert	Beschaltungsfehler
167	CtrlSafetyState- TooManyConfirms	Zu viele Quittierungen detektiert	Beschaltungsfehler
168	CtrlSafetyStateCycleTime- TooLarge	Zeit zwischen den Aktualisierungen des Quittierzustandes ist zu gross	Software-Fehler
Safe-A	xMonitorHardware-Fehler	Hardware-Fehler des Safe-AxControl Moduls	
180	MoniResolverInconsistency	Keine konsistente Werte aus den ADC Registern konnten gelesen werden	Hardware-Defekt oder Konfigurationsfehler
181	MoniResolverTriggerMis- sing	Kein Resolver Trigger empfangen	Hardware-Defekt oder Konfigurationsfehler
182	MoniResolverS2C2TooLow	Sinusquadrat plus Cosinusquadrat der Resolversignale ist zu tief	Beschaltungsfehler
183	MoniResolverS2C2TooHigh		
184	MoniSinCosS2C2TooLow	Sinusquadrat plus Cosinusquadrat der SinCos-Signale ist zu tief Beschaltungsfehler	
185	MoniSinCosS2C2TooHigh	Sinusquadrat plus Cosinusquadrat der SinCos -Signale ist zu tief	Beschaltungsfehler
186	MoniSinCosS2C2TooLo- wSpeed	Sinusquadrat plus Cosinusquadrat der SinCos-Signale ist zu tief bei hoher Geschwindigkeit	Beschaltungsfehler
187	MoniSinCosAlignment	Ausrichtungsfehler zwischen digitaler und analoger SinCos-Auswertung	Beschaltungsfehler

Nr	Fehler	Beschreibung	Wahrscheinliche Ursache
188	MoniSinCosEncoderStep	Einschrittigkeit des SinCos-Encoders wurde verletzt	Beschaltungsfehler
189	MoniPosSpeedDiffTooLarge	Geschwindigkeitsmessung von CPU A und CPU hat zu grosse Differenz	Hardware-Defekt
190	MoniPosPosDiffTooLarge	Positionsmessung von CPU A und CPU hat zu grosse Differenz	Hardware-Defekt
191	MoniPosS2C2DiffTooLarge	Sinusquadrat + Cosinusquadrat von CPU A und CPU hat zu grosse Differenz	Hardware-Defekt
192	MoniSinCosAdcDmaError	DMA Fehler der ADC bei SinCos-Messung	Hardware-Defekt
193	MoniFeedbackOffsetTooHigh	Feedback Offsetspannung zu hoch	Hardware-Defekt
194	MoniFeedbackOffsetTooLow	Feedback Offsetspannung zu tief	Hardware-Defekt
195	MoniFeedbackOffsetDiffTooLarge	Feedback Offsetspannung gemessen von CPU A und CPU B hat zu grosse Differenz	Hardware-Defekt
196	MoniSinCosAccelerationTooLarge	Feedback Beschleunigung zu gross	Hardware-Defekt oder Hartes Abbremsen der Achse
197	MoniSinCosAccelDiffTooLarge	Feedback Beschleunigung gemessen von CPU A und CPU B hat zu grosse Differenz	Hardware-Defekt
198	MoniResolverPosNegAmpl	Differenz der Messung zwischen der positiven und negativen Amplitude des Resolver-Trägersignals zu gross	Hardware-Defekt
199	MoniSafetyLevelInconsistency	Unterschiedliches Safety Level zwischen CPU A und CPU B	Hardware-Defekt
200	MoniAxisMonitoringState	Axis Monitoring State hat einen ungültigen Zustand eingenommen	Software-Fehler

5.18.1. Fehlerbehandlung

Wird von einem Sicherheitsmodul ein Fehler detektiert, so darf der GIN-SAC4xX erst wieder in Betrieb genommen werden, nachdem der detektierte Fehler untersucht und behoben wurde. Die folgende Tabelle definiert die Massnahmen welche abhängig der wahrscheinlichen Ursache des Fehlers getroffen werden müssen.

Fehlerursache	Beschreibung	Massnahme
Hardware- Defekt	Das Sicherheitsmodul hat einen internen Defekt detektiert.	Die Indel AG ist über den Defekt zu informie- ren. Der GIN-SAC4xX FS muss ersetzt wer- den. Der defekte Drive muss zur Analyse an den Hersteller zurückgesendet werden.
Software- Fehler	Die Software hat einen ungülti- gen Zustand detektiert welcher wahrscheinlich durch einen Fehler in der Programmierung erreicht wurde.	Die Indel AG ist über den Fehler zu informie- ren. Der Anwender übergibt die Zustandsin- formation und das Ereignisprotokoll dem Hersteller.
Soft-RAM- Fehler	Eine Speicherzelle wurde im Be- trieb korrumpiert.	Die Indel AG ist über den Fehler zu informie- ren. Bei mehrfachem Auftreten ist der GIN- SAC4xX zu ersetzen.
Beschaltungs- fehler	Externer Fehler oder Defekt in der Verdrahtung oder externer Hardware.	Verdrahtung sowie externe angeschlossene Module sind zu überprüfen und korrigieren. Nach der Behebung der Fehler ist ein Inbe- triebnahmetest bzw. eine Neu-Validierung der Sicherheitsfunktionen durchzuführen.
Konfigurations- Fehler	Konfiguration ist ungültig oder korrupt.	Überprüfung und Korrektur der Konfigura- tion. Nach der Behebung der Fehler ist ein Inbetriebnahmetest durchzuführen.
Folgefehler	Fehler der in der Regel aufgrund eines Fehlers auf einem ande- rem Sicherheitsmodul oder auf dem anderen Mikrokontroller des Moduls auftritt.	Es müssen die Fehler aller anderen Module des GIN-SAC4xX geprüft werden. Danach sind die Massnahmen der gefundenen Feh- ler durchzuführen. Sind auf einem GIN- SAC4xX nur Folgefehler vorhanden, so muss die Indel AG kontaktiert werden.

Detektiert der GIN-SAC4xX einen Fehler darf der Drive erst nach dem Beheben des Fehlers weiter betrieben werden. Beschädigte Drives dürfen unter keinen Umständen wieder in Betrieb genommen werden. Dies kann zu schweren Personen- und Sachschäden führen.

6. Konfiguration der Sicherheitsmodule

Dieses Kapitel beschreibt die Erstellung der Konfiguration der Sicherheitsmodule des GINSAC4xX FS. Die Konfiguration der funktionalen Steuerung ist im Inbetriebnahme-Manual zu finden. Es werden hier lediglich die erforderlichen Schritte zur Erstellung der Sicherheitskonfiguration.

6.1. **Definition der Systemtopologie**

Als Basis für die Konfiguration der Sicherheitsmodule, dient die Definition der Systemtopologie. Diese ist im XML Format in der Datei «device-map.xml» im Konfigurationsverzeichnis des Projekts definiert. In der Topologiedatei werden sämtliche im Feldbus vorhandenen Geräte definiert. Für die Konfiguration der Sicherheitsmodule müssen zusätzlich zu den Geräten auch die verwendeten Sicherheitsmodule in den GIN-SAC4xX definiert werden. Die folgende fiktive Beispielstopologie dient zur Veranschaulichung.

```
GinLink
Feldbusmaster

Control [1]

Achse1_0[2]

Achse1_1[3]

Achse1_2[4]

Achse1_3[5]

GIN-SAC4x2_2

Control [6]

Achse2_0[7]

Achse2_1[8]
```

Die Sicherheitsmodule sind mit Gelb hinterlegt. Die fortlaufende Zahl in eckigen Klammern entspricht der eindeutigen Identifikationsnummer (UID) des Moduls. Das folgende Listing zeigt die korrekte Topologiedatei passend zu dieser Topologie.


```
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
           trans-table-name="device-map"
<!-- Auflistung der Busteilnehmer am GinLink -->
<Devices>
            <!-- GIN-SAC4x4 FS -->
           <Device Type="GIN" ProductCode="311349345">
               <Name>GIN-SAC4x4_1</Name>
               <Address>
                       <MAC>undefined</MAC>
               </Address>
               <!-- Auflistung der Safety-Module des Drives -->
               <Devices>
                       <!-- Safe-AxControl -->
                       <Device Type="COP" ProductCode="311347200">
                              <Name>Control</Name>
                              <Address>
                                      <!-- Safe-AxControl ist immer auf Basisaddresse 8
-->
                                      <COP>0x8</COP>
                              </Address>
                              <!-- Eindeutige Nummer des sicheren Moduls -->
                              <UID>1</UID>
                       </Device>
                       <!-- Safe-AxMonitor 0 -->
                       <Device Type="COP" ProductCode="311347300">
                              <Name>Achse0</Name>0
                              <Address>
                                      <COP>0x0</COP>
                              </Address>
                              <!-- Eindeutige Nummer des sicheren Moduls -->
                              <UID>2</UID>
                       </Device>
                       <!-- Safe-AxMonitor 1 -->
                       <Device Type="COP" ProductCode="311347300">
                              <Name>Achse1</Name>
                              <Address>
                                      <COP>0x1</COP>
                              </Address>
                              <!-- Eindeutige Nummer des sicheren Moduls -->
                              <UID>3</UID>
                       </Device>
                       <!-- Safe-AxMonitor 2 -->
                       <Device Type="COP" ProductCode="311347300">
                              <Name>Achse2</Name>
                              <Address>
                                     <COP>0x2</COP>
                              </Address>
                              <UID>4</UID>
                       </Device>
                       <!-- Safe-AxMonitor 3 -->
                       <Device Type="COP" ProductCode="311347300">
                              <Name>Achse3</Name>
                              <Address>
                                      <COP>0x3</COP>
                              </Address>
                              <!-- Eindeutige Nummer des sicheren Moduls -->
                              <UID>5</UID>
                       </Device>
                       <!-- Ende der Sicherheitsmodule -->
               </Devices>
            </Device>
```

Fortsetzung auf nächster Seite....

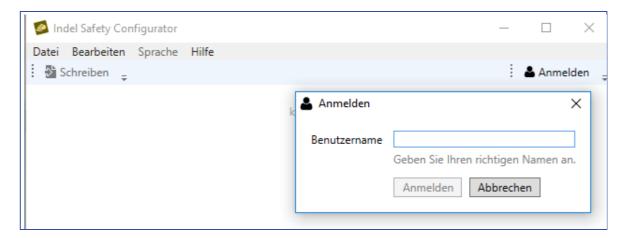
... Fortsetzung

```
<!-- GIN-SAC4x2 FS -->
            <Device Type="GIN" ProductCode="311329345">
               <Name>GIN-SAC4x2 1</Name>
               <Address>
                       <MAC>undefined</MAC>
               </Address>
               <!-- Auflistung der Safety-Module des Drives -->
               <Devices>
                       <!-- Safe-AxControl -->
                       <Device Type="COP" ProductCode="311347200">
                               <Name>Control</Name>
                               <Address>
                               <!-- Safe-AxControl ist immer auf Basisaddresse 8 -->
                                       <COP>0x8</COP>
                               </Address>
                               <!-- Eindeutige Nummer des sicheren Moduls -->
                               <UID>6</UID>
                       </Device>
                       <!-- Safe-AxMonitor 0 -->
                       <Device Type="COP" ProductCode="311347300">
                               <Name>Achse2_0</Name>
                               <Address>
                                       <COP>0x0</COP>
                               </Address>
                               <!-- Eindeutige Nummer des sicheren Moduls -->
                               <UID>7</UID>
                       </Device>
                       <!-- Safe-AxMonitor 1 --> 
<Device Type="COP" ProductCode="311347300">
                               <Name>Achse2_1</Name>
                               <Address>
                                       <COP>0x1</COP>
                               </Address>
                               <!-- Eindeutige Nummer des sicheren Moduls -->
                               <UID>8</UID>
                       </Device>
                       <!-- Ende der Sicherheitsmodule -->
               </Devices>
            </Device>
</Devices>
```


Die Systemtopologie welche in der Datei ‹device-map.xml› definiert ist, dient als Basis für die Konfiguration der Sicherheitsmodule, ist selbst aber nicht Teil der sicheren Konfigurationsdatei.

6.2. Erstellen und Bearbeiten der sicheren Konfigurationsdatei

Die Erstellung und Modifikation von sicheren Konfigurationsdateien dürfen nur durch Entwickler durchgeführt werden welche:

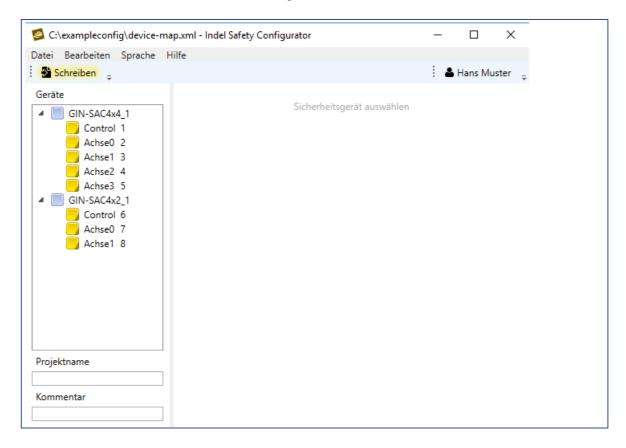

- · Kenntnis über die anzuwendenden Sicherheitsnormen besitzen
- · Durch Indel AG im Umgang mit Sicherheitsmodulen geschult wurden
- · Kenntnis über die Anwendung, insbesondere deren Sicherheitsstruktur, besitzen.

6.2.1. Voraussetzung

Für die Erstellung der Sicherheitskonfiguration ist ein Windows-PC mit installiertem «Indel Safety Configurator» notwendig. Die benötigte Version ist im Kapitel 5.13 definiert.

6.2.2. Anmeldung

Für die Erstellung oder Bearbeitung der Konfiguration ist es notwendig, sich im «Indel Safety Configurator» anzumelden. Hierzu den Anmelde-Button oben rechts benutzen.



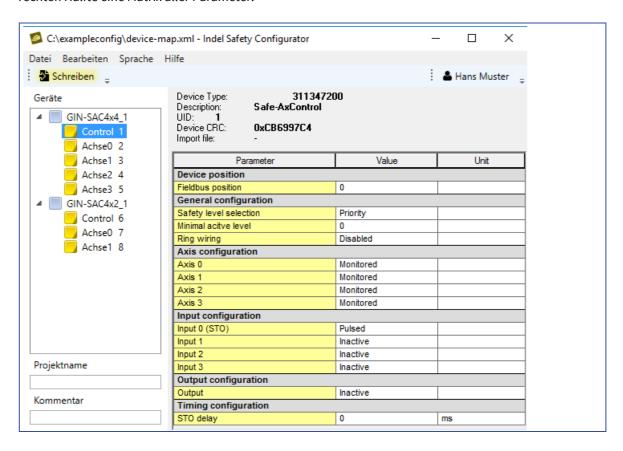
Benutzen Sie für die Anmeldung immer den kompletten Namen oder ein eindeutig zugeordneter Benutzername.

6.2.3. Öffnen der Systemtopologiedatei

Zum Erstellen oder Bearbeiten der sicheren Konfiguration muss die ‹device-map.xml› des entsprechenden Projektes geöffnet werden. Wählen Sie im ‹Datei› den Eintrag ‹Öffnen› oder drücken Sie ‹Ctrl + O› und wählen Sie im Dialog die korrekte Datei. Der «Indel Safety Konfigurator» erstellt nun eine Konfiguration bei welcher alle Parameter auf Standardwerten gesetzt sind.

Nach dem Generieren der Konfiguration ist die Topologie der erstellten Sicherheitskonfiguration zu überprüfen. Es müssen folgende Punkte verifiziert werden:

- Alle im System vorhandenen GIN-SAC4xX FS sind aufgelistet und entsprechend dem Schaltplan benannt.
- Jeder GIN-SAC 4x4 FS verfügt über ein (Control) Sicherheitsmodul vom Typ (Safe-AxControl).
- · Jede zu überwachende Achse ist vorhanden, korrekt benannt und unter dem richtigen GINSAC4xX FS aufgelistet und das Modul ist vom Typ «Safe-AxMonitor».



Eine neu erstellte Konfiguration darf erst nach Überprüfung aller Parameter auf Korrektheit für die Inbetriebnahme verwendet werden.

6.2.4. **Parametrierung**

Um die korrekte Funktionsweise der Sicherheitsmodule zu gewährleisten, ist es zwingend notwendig, dass alle Parameter korrekt gesetzt wurden. Daher muss nach der Erstellung der Sicherheitskonfiguration jedes Sicherheitsmodul und davon jeder Parameter systematisch überprüft werden. Dazu muss zunächst in der Baumdarstellung der Geräte das erste Sicherheitsmodul ausgewählt werden. Es erscheint in der rechten Hälfte eine Matrix aller Parameter.

Sämtliche Parameter müssen überprüft werden und entsprechend der Anwendung gesetzt werden. Es sind die Erklärungen und Sicherheitsanweisungen aus Kapitel 5 zu beachten.

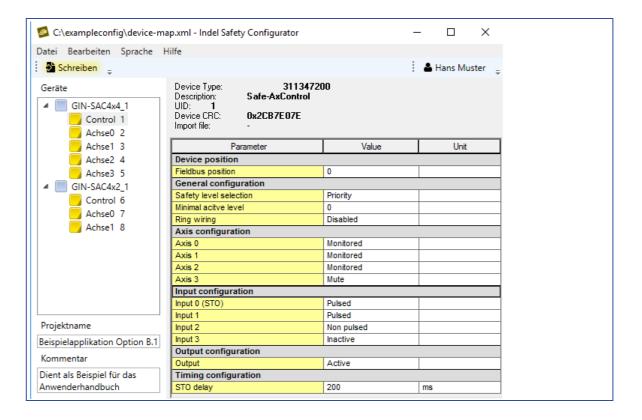
Wurden alle Parameter eines Moduls korrekt gesetzt, muss das nächste Module gewählt werden und dessen Parameter korrekt gesetzt werden. Dies muss so lange wiederholt werden, bis alle Module konfiguriert sind.

6.2.5. **Zusatzinformation**

Unterhalb der Baumansicht der Geräte sind zwei Felder vorhanden, um Zusatzinformationen anzugeben:

- Projektname: Dieser Name wird in der Konfigurationsdatei gespeichert und dient der Zuordnung zum Projekt (Anlage, Maschine, etc.).
- · Kommentar: Dieses Feld steht zur freien Verfügung für weitere Informationen zur Konfiguration.

Der Projektname dient der Zuordnung der Sicherheitskonfiguration zum Projekt. Dies ist besonders hilfreich für die Rückverfolgbarkeit von Sicherheitskonfigurationen.


6.2.6. Konfigurationsdatei erstellen

Sobald alle Parameter korrekt gesetzt sind, kann die Konfigurationsdatei der Sicherheitsmodule geschrieben werden. Diese Datei wird im Indel-Image Format erstellt. Dazu den «Schreiben»- Button oben links drücken oder im Menü «Datei» den Eintrag «Indel-Image» schreiben wählen. Das Indel-Image wird zusammen mit einer «.csv»-Datei der Parameter im Konfigurationsverzeichnis neben dem «devicemap.xml» abgelegt.

Wurden Parameter oder Zusatzinformationen geändert, so erscheint der «Schreiben»-Button gelb hinterlegt und die rechte, untere Ecke des Sicherheitsgerätes wird in der Baumstruktur dunkel eingefärbt. Wird der «Indel Safety Configurator» ohne zu Schreiben verlassen, erscheint ein Dialog welcher abfragt ob die Änderungen in die Konfigurationsdatei übernommen werden sollen.

6.2.7. Archivierung der sicheren Konfigurationsdateien

Für die Analyse von gefährlichen Vorfällen und die Wiederherstellung von bestehenden Systemen, ist der Zugriff auf die verwendete sichere Konfiguration unabdingbar. Deswegen müssen von allen im Betrieb verwendeten Konfigurationen eine Archivierung vorgenommen werden. Idealerweise wird dafür ein Versionsverwaltungssystem verwendet.

Vor der Inbetriebnahme müssen von der freigegebenen Konfiguration folgende Dateien archiviert werden:

- · device-map.xml
- ch.indel.safety.config.csv
- · ch.indel.safety.config.img
- SafetyConfiguratorProject.isc
- SafetyConfiguratorProject.sg

6.3. Laden und Verifizierung der sicheren Konfiguration

Das Laden und Verifizieren der sicheren Konfiguration darf nur durch autorisiertes Servicepersonal durchgeführt werden, welches Kenntnis über die Applikation und die verwendeten Sicherheitsunterfunktionen verfügt.

Die mit dem «Indel Safety Configurator» erstellte Konfigurationsdatei muss zur Inbetriebnahme mit dem «Indel Cockpit» auf das System geladen und verifiziert werden.

6.3.1. Voraussetzung

Für das Laden und Verifizieren der Sicherheitskonfiguration ist ein Windows- oder Linux-PC mit installiertem «Indel Cockpit» und installiertem und konfigurierten «INCOServer V» notwendig. Die benötigte Version ist im Kapitel 5.13 definiert.

6.3.2. Verbinden zum INCOServer V

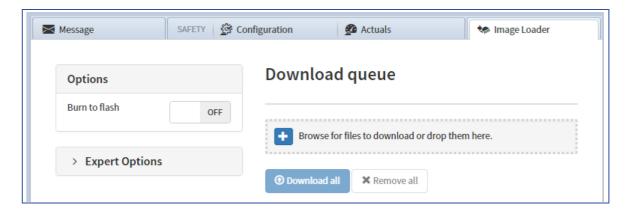
Nach dem Start des «Indel Cockpit» muss der «INCOServer V» gewählt werden, an welchem das System betrieben wird. In der Regel läuft der «INCOServer V» auf dem direkt am System verbundenen PC. Wird das «Indel Cockpit» auf diesem PC gestartet, so muss als Adresse für den «INCOServer V» ‹localhost› angegeben werden. Ansonsten muss die IP-Adresse oder der URL des Computers angegeben werden auf welchem der «INCOServer V» gestartet ist.

6.3.3. **Anmeldung**

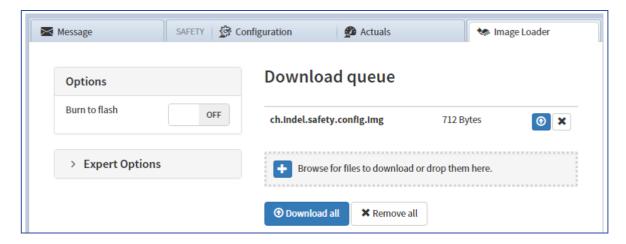
Das Verifizieren der Sicherheitskonfiguration ist nur für angemeldete Benutzer möglich. Die Anmeldung erfolgt über den ‹Log in› Button oben rechts im «Indel Cockpit». Benutzer können nur vom Administrator des Systems angelegt werden.

6.3.4. Dashboard Commissioning auswählen

Die Inbetriebnahme der Sicherheitsmodule des GIN-SAC4xX erfolgt komplett im Dashboard «Commissioning» des «Indel Cockpit». Dieses wird im Hauptmenü oben links ausgewählt.

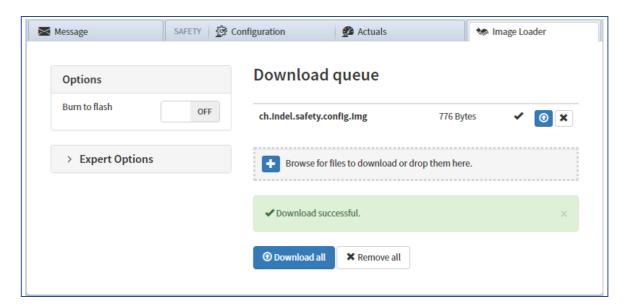

6.3.5. Auswahl des Systems

Vor den Laden der Konfiguration muss das entsprechende ‹Target› ausgewählt werden. Als Target muss der Feldbus-Master des Systems gewählt werden, an welchem der oder die GINSAC4xX angeschlossen sind. Dazu wird der Targetname des Systems links in der Targetauswahl ausgewählt.


6.3.6. Laden der Konfiguration zur Verifikation

Zum Laden der Sicherheitskonfiguration wird das «Image Loader» Werkzeug des «Indel Cockpits» benutzt, dazu auf der rechten Seite den «Image Loader» Reiter auswählen.

Danach muss die sichere Konfigurationsdatei «ch.indel.safety.config.img» ausgewählt werden welche im «Indel Safety Configurator» für dieses System erstellt wurde. Dazu entweder den ‹+› Button drücken und im ‹Öffnen› Dialog die Datei auswählen, oder die Datei aus per Drag-And-Drop in die umrandete Fläche ziehen.

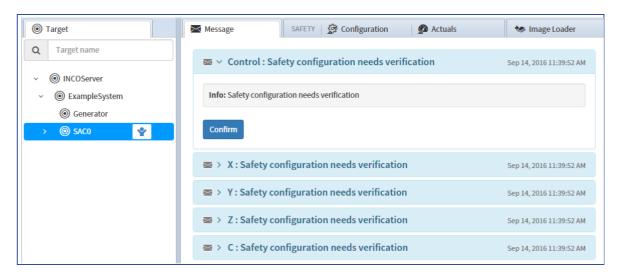


Nach dem Hinzufügen erscheint die Datei in der ‹Download Queue›.

Vergewissern Sie sich, dass die ‹Burn to flash› Option auf ‹Off› ist und drücken Sie den ‹Download all› Butten um die Sicherheitskonfiguration in das System zu laden.

War der Ladevorgang erfolgreich, wird die Sicherheitskonfiguration automatisch an alle angeschlossenen GIN-SAC4xX FS verteilt.

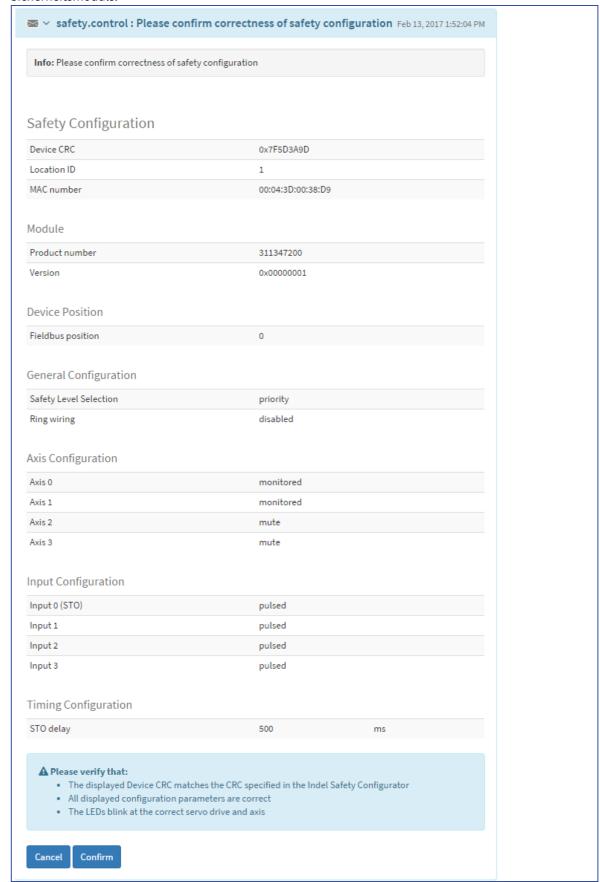
Die sichere Konfiguration darf erst gebrannt (permanentes Schreiben) werden, nachdem alle verwendeten Sicherheitsunterfunktionen mindestens einmal angefordert und getestet worden sind.


6.3.7. Verifikation der Konfiguration

Nach dem Laden einer neuen sichereren Konfigurationsdatei muss die geladene Konfiguration einmalig von einem angemeldeten Benutzer verifiziert werden. Wenn eine Verifikation durch den Benutzer notwendig ist wird das im «Indel Cockpit» durch ein blaues Benutzer-Symbol in der (Target) Ansicht links signalisiert.

Durch klicken des Symbols wird auf den ersten GIN-SAC4xX gewechselt, auf welchem Konfigurationen verifiziert werden müssen. Alternativ kann auch manuell auf das Target gewechselt werden, welches zu verifizierende Module anzeigt.

Nach dem Targetwechsel werden im Reiter «Message» für jedes zu verifizierende Sicherheitsmodul eine Nachricht angezeigt. Um eine Sicherheitskonfiguration zu verifizieren muss die Nachricht in der Nachrichtenliste aufgeklappt werden und der «Confirm» Button gedrückt werden.



Es kann nur ein Sicherheitsmodul auf einmal Verifiziert werden. Dies dient dazu, Verwechslungen auszuschliessen.

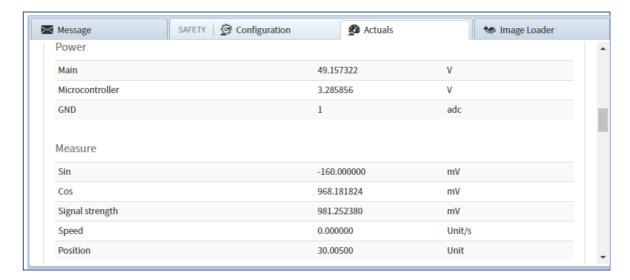
Nach dem Klick auf den «Confirm» Button erscheint eine Liste aller Parameter der Konfiguration dieses Sicherheitsmoduls.

Zusätzlich zur Parameteranzeige blinken am GIN-SAC4xX die folgenden LEDs:

- · Bei Verifikation des Safe-AxControl Moduls (UCC), (Ballast), (Control) und (Extern Enable)
- Bei Verifikation des Safe-AxMonitor Modules (Active), (Motor), (IMAX / IGBT), (PWM / Communication) und (Resolver / SinCos) der entsprechenden Achse.

Bevor eine Sicherheitskonfiguration bestätigt wird muss folgendes überprüft werden:

- Alle Parameter der Konfiguration sind korrekt und/oder die CRC der geladenen Konfiguration ist identisch mit der im «Indel Safety Configurator» für dieses Modul erstellten Konfiguration.
- Die LEDs blinken am korrekten GIN-SAC4xX und am korrekten Modul bzw. an der korrekten Achse.


Die Sicherheitskonfiguration kann erst nach Ablauf eines Timers bestätigt werden. Dieser Timer verhindert das Klicken des «Confirm» Buttons ohne vorheriges Lesen der Nachricht.

6.3.8. Verifikation der Sicherheitsunterfunktionen

Nach der Verifikation der Korrektheit der Sicherheitskonfiguration, müssen bei der Erstinbetriebnahme einmalig für jedes Modul bzw. jede Achse alle konfigurierten Sicherheitsunterfunktionen angefordert und überprüft werden.

Für die Funktionen STO und SS1-t ist es ausreichend, diese bei aktiver Achse anzufordern und zu überprüfen, ob das Modul innerhalb der geforderten Reaktionszeit in den Zustand STO wechseln und die Achsen momentenlos geschaltet werden.

Für alle Achsen sind mindestens zwei Positionen anzufahren. Es ist zu prüfen, ob die Distanzen zwischen den Positionen vom Sicherheitsmodul korrekt erfasst wurden. Damit wird verifiziert, ob die reale Geberauflösung der Achse mit der Konfiguration übereinstimmt. Die aktuelle ist Position ist im Reiter ⟨Actuals⟩ im Feld ⟨CPU A⟩ → ⟨Measure⟩ → ⟨Position⟩ zu finden. Die angezeigte Position ist keine Absolutposition, deshalb können nur Positionsdifferenzen überprüft werden.

Für die Funktionen SS1-t und SS2-t ist zu prüfen, ob das funktionale System die Achsen bei Anforderung durch kontrolliertes Bremsen zum Stillstand bringt.

Für die Funktionen SOS und SLS ist zusätzlich zur Anforderung der Funktion auch zu prüfen, ob der GIN-SAC4xX bei Überschreitung des Limits in den Zustand STO wechselt. Da die Applikation in der Regel eine Überschreitung der Limits unterbindet, muss die funktionale Überwachung deaktiviert werden. Die funktionale Überwachung kann im Indel Axis Tool deaktiviert werden. Dazu wird der Button mit dem Helm-Symbol verwendet:

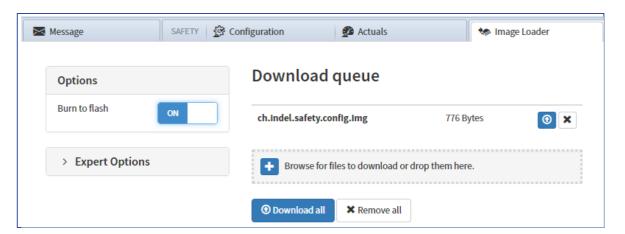
Die Deaktivierung der funktionalen Überwachung kann applikationsbedingt abweichen. Wenden Sie sich im Zweifel an den Systemadministrator oder an Indel.

Bei der Erstinbetriebnahme eines Systems sind die folgenden Schritte zur Verifikation der Sicherheitsunterfunktionen durchzuführen:

- Für jeden GIN-SAC4xX muss bei aktiver Achse die Funktion STO bzw. SS1-t angefordert werden. Es ist zu prüfen ob diese in der geforderten Reaktionszeit ausgeführt werden.
- Mit jeder Achse müssen mindestens zwei Positionen angefahren werden, um zu überprüfen, ob die Positionsdifferenzen korrekt sind.
- Für jede Achse müssen alle konfigurierten Sicherheitsunterfunktionen angefordert werden. Für die Funktionen SS1-t und SS2-t muss überprüft werden, ob das funktionale System eine Bremsrampe durchführt.
- Zusätzlich zu Anforderung muss das konfigurierte Limit muss durch die Applikation überschritten werden. Es ist zu prüfen ob in der geforderten Reaktionszeit nach der Verletzung des Limits der «GIN-SAC4xX FS» in den Zustand STO wechselt.

Die Verifikation der Sicherheitsfunktion ist ein gefährlicher Vorgang. Während der Verifikation der Sicherheitsunterfunktionen dürfen sich keine Personen um Gefahrenbereich aufhalten.

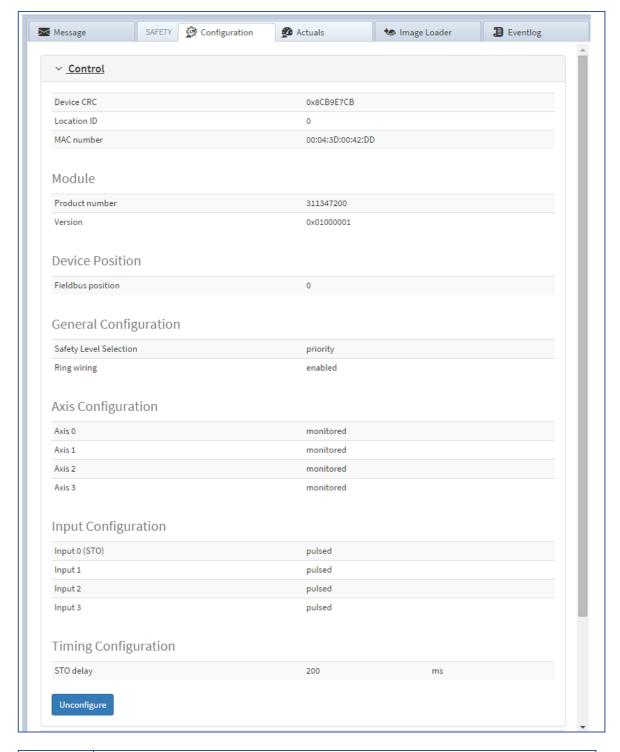
WWW.


Die Dokumentation der funktionalen Geschwindigkeits- und Positionsüberwachung ist in der Indel-Online-Hilfe auf folgender Seite:

https://doc.indel.ch/doku.php?id=software:embedded:inos:safety

6.3.9. Permanentes Laden der Sicherheitskonfiguration

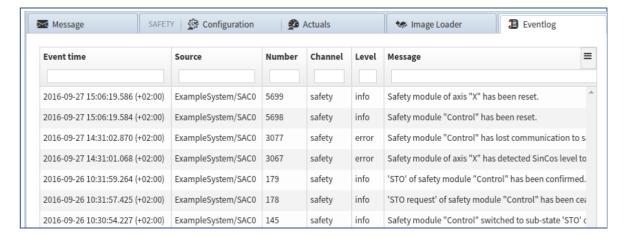
Sind alle Konfigurationen und Sicherheitsunterfunktionen überprüft worden, kann die Konfiguration permanent geladen werden. Diese wird dann in das Flash des Feldbus-Masters gebrannt. Dazu wieder die Konfiguration im «Image Loader» Tool herunterladen, diesmal jedoch mit aktivierter Option «Burn». Die Inbetriebnahme der Sicherheitsmodule ist mit diesem Schritt abgeschlossen.



Es kann in diesem Schritt nur die zuvor verifizierte Sicherheitskonfiguration geladen werden. Wird eine andere Konfiguration gewählt, wird diese von den Sicherheitsmodulen nicht akzeptiert. Die Verifikation muss dann erneut durchgeführt werden.

6.3.10. Dekonfiguration von Sicherheitsmodulen

Wurde bei der Verifikation der Sicherheitsmodule oder im Betrieb ein Fehler in der Konfiguration festgestellt, so muss die Freigabe der Konfiguration gelöscht werden. Dazu steht im Reiter (Configuration) des (Safety Tools) im «Indel Cockpit» der Button (uncofigure) zur Verfügung. Durch diese Funktion wird die Verifikation der Konfiguration zurückgenommen, und das Modul geht in den Zustand (unconfigured).



Wird ein Fehler in der Konfiguration eines sicheren Moduls festgestellt, so muss die Freigabe dessen Konfiguration sofort gelöscht werden.

6.3.11. Ereignishistorie auf dem INCOServer V

Im Reiter ‹Eventlog› werden die Ereignisse aller Systeme angezeigt, welche für den verbundenen «INCOServer V» konfiguriert sind. Alle Ereignisse welche sicherheitsrelevant sind werden im Kanal ‹safety› angezeigt.

Mit den Filtern in der Kopfzeile der Spalten, kann die Tabelle auf die wesentlichen Einträge reduziert werden. Insbesondere durch setzen des Kanals ‹safety› in der Spalte ‹Channel› und durch setzen des Systemnamens in der Spalte ‹Source›.

Im Menu der Tabelle (oben rechts) stehen weiter Funktionen wie Sortierung und Auswahl der angezeigten Spalten zur Verfügung. Zusätzlich können hier alle angezeigten Daten als <CSV> Datei exportiert werden.

6.3.12. Konfigurationshistorie auf dem Sicherheitsmodul

Zusätzlich zur Ereignishistorie auf dem «INCOServer V» wird auf den Sicherheitsmodulen eine Historie der CRC der letzten fünf Konfigurationen gespeichert. Die Konfigurations-Historie ist im «Indel Cockpit» im Reiter «Actuals» zu finden.

Auch bei neuen GIN-SAC4xX befinden sich in der Historie der Sicherheitsmodule bereits CRCs. Diese entsprechen den CRCs der Konfigurationen welche im Endabnahmetest verwendet werden.

6.3.13. Austausch des Drives

Wird ein «GIN-SAC4xX FS» ausgetauscht, so müssen alle Sicherheitsmodule und Sicherheitsunterfunktionen dieses Drives neu verifiziert werden. Die Sicherheitskonfiguration muss nicht neu geladen werden, da diese auf dem Feldbus-Master gespeichert ist.

Es kann nur ein Austausch durch einen Drive des gleichen Typs vorgenommen werden. Die Sicherheitsmodule akzeptieren keine Konfigurationen für andere Typen.

6.3.14. Austausch des Feldbus-Masters

Wird der Feldbus-Master ausgetauscht, so muss die Sicherheitskonfiguration neu geladen werden. Die Verifikation muss nicht neu durchgeführt werden sofern die Konfiguration identisch ist.

6.3.15. Änderung der Konfiguration

Wird eine andere Konfiguration benötigt, so muss die gesamte Konfiguration neu geladen werden. Es müssen jedoch nur diejenigen Sicherheitsmodule verifiziert werden, deren Parameter geändert haben.

7. Integration in das funktionale System

Die Integration der Sicherheitsmodule in das übergeordnete, funktionale System ist Bestandteil des Indel Betriebssystems «INOS». Für die korrekte Ansteuerung der Sicherheitsmodule müssen alle «GIN-SAC4xX FS» und die Sicherheitsmodule korrekt in die Gerätetopologie in der «devicemap.xml» Datei eingetragen sein. Eine Beispieldatei wird in Kapitel 6.1gezeigt.

7.1. Stillsetzen der Achsen bei Funktion SS1-t und SS2-t

Die Sicherheitsunterfunktionen SS1-t und SS2-t sind im GIN-SAC4xX FS als Typ C implementiert. Die bedeutet, dass das Stillsetzen der Achse vom funktionalen Teil der Steuerung durchgeführt wird. Die Sicherheitsmodule überwachen ausschliesslich die Zeit des Stillsetzen und gehen nach deren Ablauf in den Zustand STO beziehungsweise SOS über.

Das Stillsetzen der Achsen durch die funktionale Steuerung muss nach jeder Software oder Hardware-Änderungen überprüft werden. Die gilt auch für Software- oder Firmware-Updates.

www.

Die Dokumentation der Konfiguration des Stillsetzens durch das funktionale System ist in der Indel-Online-Hilfe auf folgender Seite:

https://doc.indel.ch/doku.php?id=software:embedded:inos:safety

7.2. Quittierung von STO-Anforderungen

Wird die Funktion STO angefordert (z.B. durch Betätigung eines Nothalts) so können die Achsen erst wieder aktiviert werden, nach dem die Anforderung zurückgenommen und quittiert wurde. Diese zusätzliche Quittierung dient als Wiederanlaufschutz. Die Quittierung der STO-Anfrage erfolgt über das funktionale System. Die Quittierung kann in der Applikation über einen Button auf einer graphische Benutzeroberfläche oder durch eine physische Quittiertaste ausgelöst werden. Dabei müssen vom funktionalen System zwei Flankenübergänge erkannt und ans sichere System weitergeleitet werden. Diese Flanken entsprechen jeweils dem Runterdrücken der Taste und dem darauffolgenden Lösen der Taste. Die Schnittstelle für die Applikation zum Quittieren von STO-Anforderungen wird vom Indel Betriebssystem «INOS» zur Verfügung gestellt. Es sind dies die Funktionen «SAFETY.ConfirmSTO1» und «SAFETY.ConfirmSTO2».

Die Quittierung von STO-Anfragen, darf nicht automatisiert werden, sondern muss immer durch den Benutzer per Tastendruck erfolgen.

Sofern eine Oszillation des Eingangs nicht ausgeschlossen werden kann, muss die Quittiertaste mit mindestens 20 Hz Abtastrate erfasst werden.

7.3. Reset der Sicherheitsmodule

Die Sicherheitsmodule haben die Möglichkeit, über eine Funktion einen Neustart durchzuführen. Ein Neustart ist nötig, falls eine andere Konfiguration geladen werden muss, oder Falls das Modul einen Fehler detektiert hat. Die Schnittstelle für die Applikation für den Reset von Sicherheitsmodulen wird vom Indel Betriebssystem «INOS» zur Verfügung gestellt.

Ein Reset der Module, darf nicht automatisiert werden, sondern muss immer durch den Benutzer initiiert werden. Hat ein Sicherheitsmodul einen Fehler detektiert, so muss die Applikation diesen dem Benutzer vor dem Reset anzeigen.

8. Technische Beschreibung

8.1. SAC4xX Option PRO

Jeder SAC4xX mit der Option PRO ist mit einem Dual-Core Prozessor ausgestattet. Damit ist es möglich, die Motorenregelung auf einem Core zu betreiben, während der zweite Core für eine kundenspezifische Applikation genutzt werden kann. Damit kann, bei einfacheren Applikationen, der SAC4xX gleichzeitig auch als Master bzw. GinLink Master eingesetzt werden.

8.2. Options-Drehschalter

Jeder SAC4xX ist mit einem Options-Drehschalter (S1) ausgestattet. Damit kann bestimmt werden, in welchem Zustand der Master gebootet wird. Nachfolgende Tabelle zeigt die verschiedenen Zustände im Bezug des Options-Drehschalters und den möglichen Kombinationen.

Wird die LAN-Schnittstelle aktiviert so ist diese automatisch auf der Buchse X8 GinLink out aktiviert.

Drehschalter Position	Notsys- tem	GinLink Master ¹⁾	LAN	Default IP	Bemerkung
0x0					Standard Slave
0x1		Х	Х		
0x2		Х	Х	Х	
0x3	Х				
0x4			Х		Standard Stand-Alone
0x5	Х		Х		
0x6			Х	Х	
0x7	Х		Х	Х	
0x8 0xF	Reserviert	Ī			

1) Nur der GIN-SAC4xX mit der Option PRO kann als GinLink Master eingesetzt werden

8.3. Technische Daten

8.3.1. Allgemein

Allgemeine Bedingungen		GIN-SAC4xX		
		230 V	400 V	
Vibration max		Sinus, 10 Hz bis 150 H	Hz, Amplitude 0.075 mm	
Schock max			1 g	
Störaussendung mit Netzfilter		EN 61800-3, Kategorie C2 (Industrie)		
Störfestigkeit mit Netzfilter		EN 61800-3, zweite Umgebung (Industrie)		
Elektrische Sicherheit (Spannungsabstände)		EN 61800-5-1		
Gewicht GIN-SAC4x4	Kg	7.04		
Gewicht GIN-SAC4x3	Kg	5.70		
Gewicht GIN-SAC4x2	Kg	4.45		
Gewicht GIN-SAC4x1	Kg	3	3.12	

8.3.1.1 Ableitstrom

Der Ableitstrom des kompletten Antriebsystems setzt sich aus mehreren Komponenten zusammen:

- Ableitstrom verursacht durch das Netzfilter
- Ableitstrom des SAC4x4, verursacht durch Y-Filterkondensatoren
- Ableitstrom verursacht durch die Motorkabelkapazitäten
- Ableitstrom-Anteil mit der PWM Frequenz verursacht durch die Motorkabelkapazitäten

Typischer Ableitstrom des SAC4x4 bei Betrieb am 1ph 230V / 50Hz Netz Ableitstrom des SAC4x4 nominal, 50 Hz Anteil: 2.0 mA

Ableitstrom pro Meter Motorkabel, 50 Hz Anteil: 0.012 mA / m

+ Anteil des Netzfilters

+ Anteil Ableitstrom mit PWM-Frequenz

Typischer Ableitstrom des SAC4x4 bei Betrieb am 3ph 400V / 50Hz Netz Ableitstrom des SAC4x4 nominal, 150 Hz Anteil: 1 mA

Ableitstrom pro Meter Motorkabel, 150 Hz Anteil: 0.015 mA / m

+ Anteil des Netzfilters

+ Anteil Ableitstrom mit PWM-Frequenz

Praxis Hinweis:

Bei Verwendung von Netzfiltern am 3-Phasen Netz wird üblicherweise der Ableitstrom bei Betrieb an symmetrischen 3 Netzphasen angegeben. Fehlt dabei 1 oder 2 Phasen, so kann der Ableitstrom deutlich grösser sein. Dieser Fall kann beim Ein-/oder Ausschalten der Maschine auftreten, wenn nicht alle 3 Netzphasen genau gleichzeitig geschaltet werden

8.3.2. Netzanschluss und Zwischenkreis

Nenndaten		GIN-SAC4xX	
		230 V	400 V
Nenn-Anschlussspannung 1-Phasig	V_{AC}	1 x 110-10% 230+10%	1 x 110 _{-10%} 400 _{+10%}
Nenn-Anschlussspannung 3-Phasig	V_{AC}	3 x 110 _{-10%} 230 _{+10%}	3 x 110 _{-10%} 400 _{+10%}
Nennleistung S1 SAC4x4 230V/400V 3ph	kVA	6.5	11.3
Nennleistung S1 SAC4x3 230V/400V 3ph	kVA	4.9	8.5
Nennleistung S1 SAC4x2 230V/400V 3ph	kVA	3.3	5.7
Nennleistung S1 SAC4x1 230V/400V 3ph	kVA	1.7	2.9
Überspannungsabschaltung	V_{DC}	400	800
Maximale Netzasymmetrie		± 3	9%
Netzfrequenz	Hz	5060	
Zwischenkreiskapazität GIN-SAC4x4	μF	3760	940
Zwischenkreiskapazität GIN-SAC4x3	μF	2820	705
Zwischenkreiskapazität GIN-SAC4x2	μF	1880	470
Zwischenkreiskapazität GIN-SAC4x1	μF	940	235
Zulässige Netzarten Sternpunkt geerdet		TT, TN	
Einschaltintervall	s	>]	10
Externe Absicherung SAC4x4	AT	25	Α
Externe Absicherung SAC4x3	AT	16	Α
Externe Absicherung SAC4x2	AT	16	Α
Externe Absicherung SAC4x1	AT	16 A	
Einschaltstrom	Α	< 2	
Überspannungskategorie		III (EN 61800-5-1)	
Max. Kurzschlussstrom des Netzan- schlusses	А	50	00

Siehe Kapitel 9.4 auf Seite 129 und Kapitel 9.5 auf Seite 130

Für den Betrieb des Geräts ist ein externes Netzfilter und eine externe Absicherung notwendig. Die Vorsicherung und das Netzfilters dürfen durch den Anwender entsprechend den Anforderungen der realen Anwendung auf kleinere Werte dimensioniert werden.

Das Gerät ist für den Betrieb an Netzanschlüssen vorgesehen, welche höchstens einen maximalen Kurzschlussstrom von 5000A liefern.

8.3.3. Nennströme Endstufen

Nachfolgende Tabellen zeigen die theoretisch möglichen Nenn- und Maximalströme der Endstufen. Die Daten beruhen nur auf theoretischen Berechnungen. Die individuelle Belastung muss daher immer vom Anwender getestet werden. Vor allem ist die strikte Einhaltung der Umgebungsbedingungen in Kapitel 8.4 zu beachten.

Nennströme		GIN-SAC4x4			
		230 V	400 V		
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}		22		
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	:	33		
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}	:	18		
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	27			
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	13			
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	19.2			
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	9			
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	1	3.5		
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}		6		
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	9			
I _{MAX} Ballast IGBT	A_{RMS}	24			
Minimaler externer Ballastwiderstand	Ω	15 30			
Maximale Verlustleistung	W	250			

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-SAC4x3		
		230 V	400 V	
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}	10	6.5	
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	24	4.5	
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}	1:	3.5	
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	2	20	
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	10		
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	14.5		
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	6.5		
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	10		
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}	4	.5	
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	6.75		
I _{MAX} Ballast IGBT	A_{RMS}	24		
Minimaler externer Ballastwiderstand	Ω	15 30		
Maximale Verlustleistung	W	185		

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-S	SAC4x2	
		230 V	400 V	
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}		11	
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	1	6.5	
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}		9	
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	13.5		
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	6.7		
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	9.6		
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	4.5		
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	(5.7	
I _{NENN} bei 32 kHz PWM Frequenz	A _{RMS}		3	
I _{MAX} bei 32 kHz PWM Frequenz	A _{RMS}	5.5		
I _{MAX} Ballast IGBT	A _{RMS}	24		
Minimaler externer Ballastwiderstand	Ω	15 30		
Maximale Verlustleistung	W	130		

Die Drives können 5s lang mit I_{MAX} betrieben werden

Nennströme		GIN-SAC4x1		
		230 V	400 V	
I _{NENN} bei 8 kHz PWM Frequenz	A_{RMS}	Ē	5.5	
I _{MAX} bei 8 kHz PWM Frequenz	A_{RMS}	8	.25	
I _{NENN} bei 12 kHz PWM Frequenz	A_{RMS}	4	4.5	
I _{MAX} bei 12 kHz PWM Frequenz	A_{RMS}	6.75		
I _{NENN} bei 16 kHz PWM Frequenz	A_{RMS}	3.25		
I _{MAX} bei 16 kHz PWM Frequenz	A_{RMS}	4.8		
I _{NENN} bei 24 kHz PWM Frequenz	A_{RMS}	2.25		
I _{MAX} bei 24 kHz PWM Frequenz	A_{RMS}	3	.38	
I _{NENN} bei 32 kHz PWM Frequenz	A_{RMS}	1	1.5	
I _{MAX} bei 32 kHz PWM Frequenz	A_{RMS}	2	.25	
I _{MAX} Ballast IGBT	A_{RMS}	24		
Minimaler externer Ballastwiderstand	Ω	15 30		
Maximale Verlustleistung	W	65		

Die Drives können 5s lang mit I_{MAX} betrieben werden

8.3.4. Logikspeisung

Logikspeisung		GIN-SAC4xX	
		230 V 400 V	
Betriebsspannung		24 V _{DC -15%+25%} (SELV / PELV)	
Externe Absicherung	Α	8, Flink	
Stromaufnahme	Α	< 2 ¹⁾	
Max. Potential zwischen GND und Erde	V_{DC}	50 ²⁾	

- 1) Der benötigte Strom ist abhängig von der Belastung durch Feedback-Systeme, internen Lüftern, etc.
- 2) Es wird empfohlen die Logikspeisung beim Netzgerät zu erden (GND und ERDE)

Siehe Kapitel 9.6 auf Seite 130

8.3.5. **Motor**

Motor		GIN-SAC4xX		
		230 V	400 V	
Minimale Induktivität ph-ph	mH		1	
Minimaler Widerstand ph-ph	Ω		0.2	
Maximale Leitungslänge ohne Drossel	m	20		
Motor Kabel		geschirmt		
Minimale Motor Nennspannung	V	325 565		
Unterstützte Motortypen 1)		 DC-Motoren (nicht für gefährliche Achsen) Synchron-Servomotoren Linear-Motoren Bürstenlose Asynchron-Motoren 		

Siehe Kapitel 9.3 auf Seite 127

DC-Motoren dürfen am GIN-SAC4xX FS nicht in Achsen für Sicherheitsapplikationen im Sinne der Funktionalen Sicherheit verwendet werden.

Für Motoren mit integrierten Gebern gelten sämtliche Sicherheitsanforderungen aus Kapitel 5.9 auf Seite 54 sofern diese für die sichere Geberauswertung genutzt werden.

8.3.6. Feedbacks

8.3.6.1 **SinCos**

SinCos Interface		GIN-SAC4xX		
		230 V	400 V	
Pegel	V _{RMS}		1	
Differenzieller Eingangswiderstand	Ω		120	
Max. Eingangsfrequenz	kHz	200		
Min. Eingangsfrequenz für SLS (Sichere langsame Geschwindigkeit)	Hz	1		
Max. Strombelastung 5V Ausgang	mA	200		
Max. Strombelastung 12V Ausgang	mA	200		
Auflösung analog Eingang	Bit	16		
Verwertung analog Eingang	Bit	12		
Anschlusskabel		doppelt geschirmt, Paar verdrillt		

Siehe Kapitel 9.10.1 auf Seite 133

8.3.6.2 **Resolver**

Resolver Interface		GIN-SAC4xX		
		230 V	400 V	
Spannungspegel Generator Ausgang	V_{RMS}	4	1	
Spannungspegel Sinus / Cosinus Eingang	V_{RMS}	2	2	
Max. Eingangsfrequenz*	kHz	1		
Min. Eingangsfrequenz* für SLS (Sicher li- mitierte Geschwindigkeit)	Hz	1		
Auflösung analog Eingang	Bit	16		
Verwertung analog Eingang	Bit	16		
Mehrpolige Resolver		ja		
Anschlusskabel		doppelt geschirn	nt, Paar verdrillt	

^{*} Eingangsfrequenz := Drehfrequenz × Polpaaranzahl

Siehe Kapitel 9.10.2 auf Seite 134

8.3.6.3 Inkrementalgeber

Inkrementalgeber an		GIN-SAC4xX		
Absolutwert Interface		230 V 400 V		
Pegel		RS422		
Eingangswiderstand	Ω	120		
Max. Eingangsfrequenz	MHz	2.5		
Max. Strombelastung 5V Ausgang	mA	200		
Max. Strombelastung 12V Ausgang	mA	200		
Anschlusskabel		geschirmt		

Siehe Kapitel 9.10.3.1 auf Seite 135

Inkrementalgeber an		GIN-SAC4xX			
SinCos Interface		230 V 400 V			
Pegel		RS422			
Eingangswiderstand	Ω	120			
Max. Eingangsfrequenz	kHz	200			
Max. Strombelastung 5V Ausgang	mA	200			
Max. Strombelastung 12V Ausgang	mA	200			
Anschlusskabel		geschirmt			

Siehe Kapitel 9.10.3.2 auf Seite 136

Die Verwendung von digitalen Inkrementalgebern ist für die sichere Geberauswertung nicht zulässig. Digitale Inkrementalgeber dürfen nur als zusätzlicher Geber für das funktionale System verwendet werden.

8.3.6.4 **Absolutwert Feedback**

Folgende Absolutwert Feedbacksysteme werden vom SAC4xX unterstützt

Hiperface Siehe Kapitel 9.10.4.1 auf Seite 138

• EnDat 2.1 Siehe Kapitel 9.10.4.2 auf Seite 139

· SSI Siehe Kapitel 9.10.4.3 auf Seite 140

· BissC Siehe Kapitel 9.10.4.3 auf Seite 140

EnDat 2.2 Siehe Kapitel 9.10.4.3 auf Seite 140

Die Verwendung von Absolutwert Feedbacksystemen ist für die sichere Geberauswertung nicht zulässig. Absolutwert Feedbacksysteme dürfen nur als zusätzlicher Geber für das funktionale System verwendet werden. Ist ein Absolutwert Feedback mit einem analogen Sin/Cos-Geber kombiniert implementiert, so gilt für den Sin/Cos-Teil die Anforderungen aus Kapitel 5.9 auf Seite 54

8.3.7. **Digitale IO's**

Digitale Eingänge		GIN-SAC4xX			
		230 V 400 V			
Eingangsspannung	V _{DC}	24 _{±25%}			
Schaltschwelle	V _{DC}	12			
Analoges Eingangsfilter	kHz	3			
Blindstrom	mA	2			

Siehe Kapitel 9.7.1 auf Seite 131

Digitale Ausgänge		GIN-SAC4xX			
		230 V 400 V			
Max. Ausgangsstrom	Α	1			
Nennspannung externe Speisung	V _{DC}	24±25%			
Schaltverzögerung	ms	0	.5		

Siehe Kapitel 9.7.2 auf Seite 131

8.4. Umgebungsbedingungen

Die Einhaltung der Umgebungsbedingungen liegt in der Verantwortung des Benutzers. Indel lehnt jegliche Haftung bei Nichteinhaltung ab.

Umgebungstemperatur Lager	°C	-2085
Relative Luftfeuchtigkeit Lager, keine Kondensation		95%
Umgebungstemperatur Betrieb	°C	040
Relative Luftfeuchtigkeit, keine Kondensation		80%
Maximale Kühlkörpertemperatur	°C	80
Schutzart GIN-SAC4xX		IP20
Schutzart Schaltschrank		IP54
Einbaulage		Vertikal
Zulässige Aufstellhöhe ohne Leistungsreduzierung	müM	1000
Zulässige Aufstellhöhe mit Leistungsreduzierung	müM	3000 -1.0% / 100m
Verschmutzungsgrad		2 (EN 50178)
Überspannungskategorie		III (EN 61800-5-1)

Indel Drives der Serie GIN-SAC4xX FS müssen in einen IP54 konformen Schaltschrank eingebaut werden.

8.5. **Bemerkungen zum US-Markt**

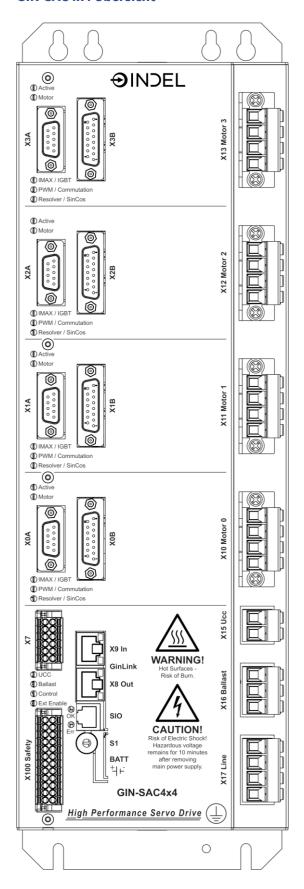
Die SAC4xX Servo Drives haben zurzeit keine UL-Zertifizierung.

Die Geräte der SAC4 Serie wurden im Rahmen einer IEC CB-Scheme Baumusterprüfung vom TÜV Süd auf die Einhaltung der Produktnorm IEC-61800-5-1 geprüft. Die entsprechende Bescheinigung befindet sich im Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.** auf Seite **Fehler! Textmarke nicht definiert.**.

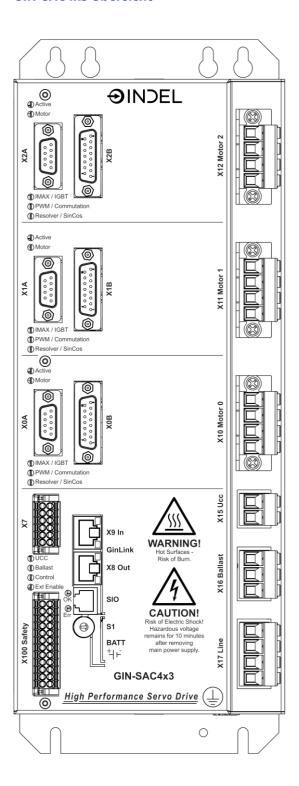
Bei dieser Baumusterprüfung wurden auch die Besonderheiten der UL 61800-5-1 mitberücksichtigt und mit-geprüft, damit erfüllen die Geräte grundsätzlich die technischen Anforderungen der UL 61800-5-1.

Auf Anfrage können wir hierzu einen Auszug aus dem Prüfbericht der Baumusterprüfung als Nachweis zur Verfügung stellen.

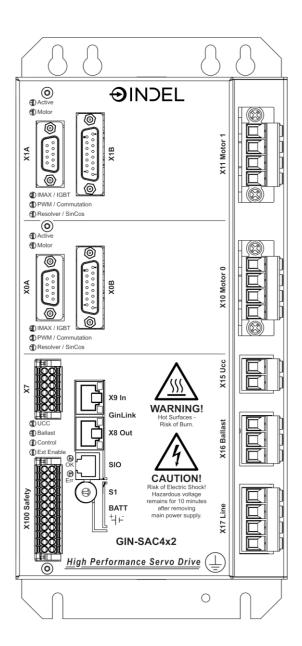
9. Elektrische Installation


9.1. Hinweise

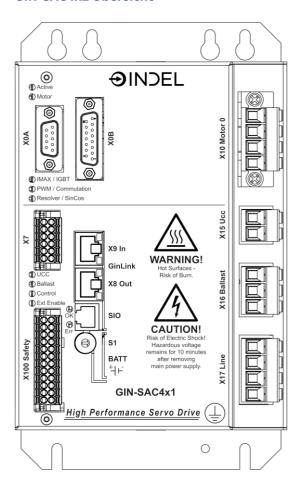
- · Bei Verdrahtungsarbeiten am Drive ist der Schaltschrank gegen Wiedereinschalten zu sichern
- · Die national geltenden Unfallverhütungsvorschriften sind einzuhalten
- · Die elektrische Installation ist gemäss nationalen Vorschriften (Leiterfarben,-Querschnitte, Absicherungen, Schutzleiteranschluss, etc.) auszuführen


9.2. Steckerbelegung SAC4xX

9.2.1. GIN-SAC4x4 Übersicht



9.2.2. GIN-SAC4x3 Übersicht



9.2.3. GIN-SAC4x2 Übersicht

9.2.4. GIN-SAC4x1 Übersicht

9.2.5. Logikversorgung / Digitale IOs

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	24 V (Main PWR Supply)
		2	GND
	2 10001 1	3	DIN 3
	4 1100011 3	4	DIN 2
	6 1100011 5	5	DIN 1
X7	8 1100011 7	6	DIN 0 / ext. Enable
	10 110011 9	7	DOUT 3
	12 11001 11	8	DOUT 2
		9	DOUT 1
4 <u> 111-1-1-1</u>	10	DOUT 0	
		11	VCC DOUT (DOUT Supply)
		12	GND DOUT

9.2.6. **Netzanschluss**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	PE
X17 Line	2	2	L1
	(D) 3 4	3	L2
		4	L3

9.2.7. **Motoranschluss**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
		1	W
X10 Motor 0 X11 Motor 1	1 2	2	V
X12 Motor 2 X13 Motor 3	1 3 4	3	U
		4	PE

9.2.8. **Zwischenkreisspannung**

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
X15 UCC	1	1	DC+
	2	2	DC -

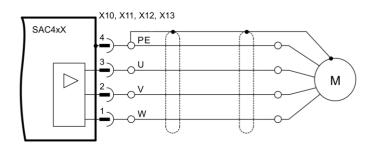
9.2.9. Ballastwiderstand

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung
	1 1	1	PE
X16 Ballast	1 2	2	RB -
	' الصّحابا ع	3	RB+

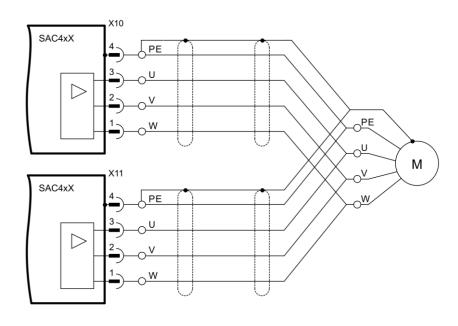
9.2.10. Feedback Schnittstellen

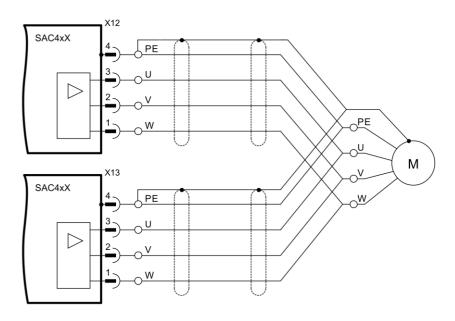
Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung		
		1	Sin+ (SinCos)		
	(\bigcirc)	2	GND		
		3	Cos+ (SinCos)		
	(3 O ⁸)	4	+12V		
		5	Data+ (RS422)		
X0B	LB 130 05 120 05 120 04 11- 04	6	Ref+ (RS422)		
X1B		7	MTmp		
X2B				8	CLK - (RS422)
ХЗВ			9	Sin- (SinCos)	
		10	GND		
		11	Cos- (SinCos)		
			12	+5V	
		13	Data- (RS422)		
			14	Ref- (RS422)	
		15	Clk+ (RS422)		

Steckerbezeichnung	Abbildung	Pin-Nr.	Pin Bezeichnung		
		1	Shield / Schirm		
		2	MTmp+		
	9 O O O O O O O O O O O O O O O O O O O	3	Cos + (Resolver)		
X0A Resolver 0		resolver 0 lessolver 1 lessolver 2 resolver 3	4	Sin + (Resolver)	
X1A Resolver 1 X2A Resolver 2			$I I I I \cap \bigcap_{i=1}^{n} I I I I$	5	Ref+ (Resolver)
X3A Resolver 3			6	MTmp-	
		7	Cos- (Resolver)		
		8	Sin- (Resolver)		
		9	Ref- (Resolver)		

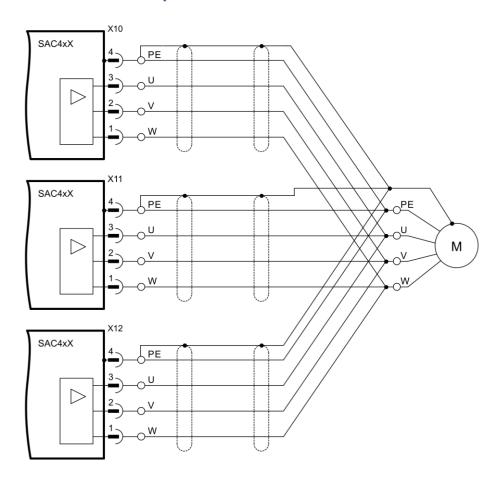

9.2.11. **Safety**

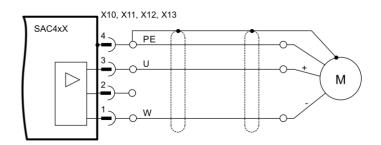
Steckerbe- zeichnung	Pin Bezeichnung	Abbildung / Pins	Pin Bezeichnung	
X100	SafeInp0A- Gnd SafeInp0B- SafeInp1B SafeInp2A SafeInp3B Gnd K2 Gnd PulseOutB Gnd SafeOutB	2 4 6 8 10 12 14 16 18 20 22 24	1 3 5 7 9 11 13 15 17 19 21 23	SafeInp0A+ Gnd SafeInp0B+ SafeInp1A SafeInp2B SafeInp3A Gnd K1 Gnd PulseOutA Gnd SafeOutA




9.3. Motorenanschluss

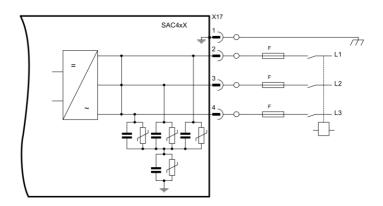
9.3.1. **3-Phasen Motor an einer Endstufe**


9.3.2. **3-Phasen Motor an zwei parallelen Endstufen**

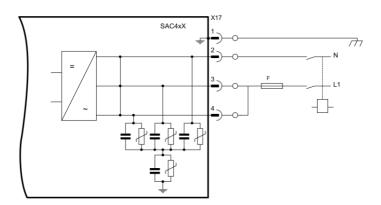


9.3.3. **3-Phasen Motor an drei parallelen Endstufen**

9.3.4. **DC-Motor an einer Endstufe**



DC-Motoren dürfen am GIN-SAC4xX FS nicht in Achsen für Sicherheitsapplikationen im Sinne der funktionalen Sicherheit verwendet werden.



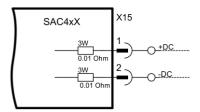
9.4. **Netzanschluss**

- · 3-Phasige Einspeisung ab dem 400V Drehstromnetz
- Geeignet für GIN-SAC4xX FS/400V

- 1-Phasige Einspeisung ab Niederspannungsnetz
- Geeignet für GIN-SAC4xX FS/230V

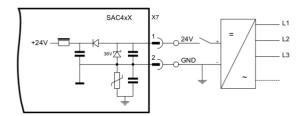
Für den Betrieb des Geräts ist eine externe Absicherung und ein geeignetes Netzfilter vorzusehen. Siehe Kapitel 8.3.2 Seite 111.

9.5. **Zwischenkreis**


Die DC-Zwischenkreisspannung des Drives ist auf den Stecker X15 geführt. Damit können die Zwischenkreise mehrerer SAC Drives parallelgeschaltet werden und sich so die Zwischenkreiskapazitäten teilen. Dies ist aber nur erlaubt, wenn die Netzspeisung bei allen Drives identisch ist. Ansonsten können die Drives zerstört werden.

Bei einphasiger Einspeisung müssen alle Drives mit verbundenem Zwischenkreis an die gleiche Netzphase angeschlossen werden, ansonsten wird sich die Zwischenkreisspannung erhöhen und die Drives werden aufgrund von Überspannung zerstört.

Aufgrund der Zwischenkreiskapazitäten dürfen maximal 4 SAC4xX Drives parallelgeschaltet werden. Ansonsten wird der Einschaltstrom zu gross und externe Schutze können kleben bleiben oder zerstört werden.


Intern sind zwei 0.01Ω Widerstände vorhanden, um Ausgleichsströme zu limitieren.

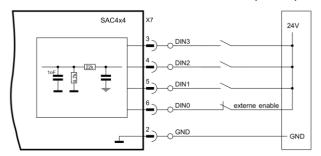
- · Parallelschaltung von Zwischenkreisen von SAC4 Drives
- · Anschluss von zusätzlicher externer Kapazität falls die Zwischenkreiskapazität für Beschleunigungsphasen nicht ausreicht
- · Speisung des Zwischenkreises mittels externer DC-Spannungsversorgung

9.6. **Logikspeisung**

Die Servo-Drives müssen für den Betrieb mit einer 24 V Logikspeisung versorgt werden. Diese speist die interne Elektronik der GIN-SAC4x4 FS, die digitalen Ausgänge und die angeschlossenen Geber.

Falls die Speisung bei Kurzschluss mehr als 8A liefern kann, ist 24V seitig eine 8A Absicherung vorzusehen. Siehe Kapitel 8.3.4 Seite 114.

Damit die elektrischen Werte für Kleinspannung mit sicherer Trennung auf den Sicherheitsmodulen nicht überschritten werden können, dürfen ausschliesslich 24 Volt Netzteile eingesetzt, die den PELV-/SELV-Bestimmungen gemäss EN 50178 und EN 60204 entsprechen.

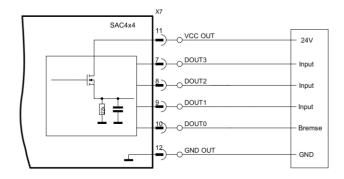


9.7. Standard Digitale Ein- und Ausgänge

9.7.1. **Eingänge**

Die nicht sicheren digitalen Eingänge können als zusätzliches extern Enable verwendet werden. Damit kann der Servo Drive extern deaktiviert werden. Ist eine Not-Stop Bremsrampe konfiguriert, so wird diese nach deaktivieren des enable Eingangs ausgelöst und der Motor bremst ab.

- · DINO kann als extern Enable für alle Achsen auf dem Drive genutzt werden
- · Bezugsmasse ist GND
- · Parallel dazu einsehbar als General Purpose Input



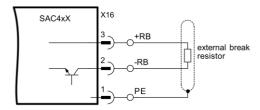
Die maximale zugelassene Kabellänge der digitalen Eingänge ist 30 Meter. Bei Verwendung längerer Kabel müssen zusätzliche Massnahmen (wie z.B. Filter) zur Entstörung getroffen werden.

9.7.2. Ausgänge

Die digitalen Ausgänge sind als High-Side-Treiber ausgeführt. Die Spannungsversorgung aller Ausgänge erfolgt via Einspeisung einer 24V Spannung am VCC_Out Pin.

- · Konfigurierbar als Ausgang für Haltebremse
- Konfigurierbar als Status-Ausgang "reduzierter Strommodus"
- Konfigurierbare Zuordnung zwischen Achse zu einem Ausgang
- · Parallel dazu (OR-Funktion) Ansteuerbar als General Purpose Output
- · Bezugsmasse ist GND OUT

Die maximale zugelassene Kabellänge der digitalen Ausgänge ist 30 Meter. Bei Verwendung längerer Kabel müssen zusätzliche Massnahmen (wie z.B. Filter) zur Entstörung getroffen werden.

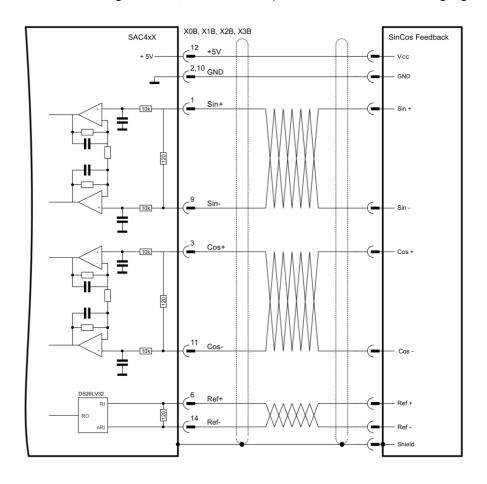


9.8. Sichere digitale Ein- und Ausgänge

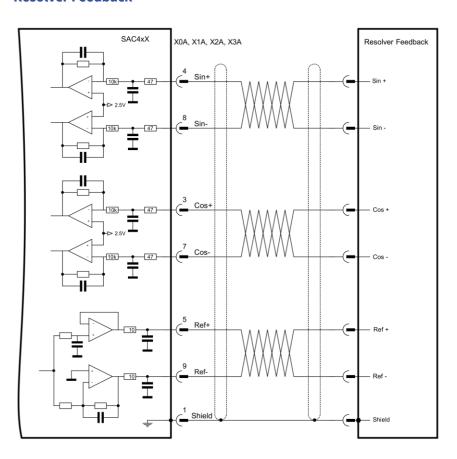
Für die Beschaltung der sicheren digitalen Ein- und Ausgänge sind die Anweisungen in Kapitel 5 zu beachten.

9.9. Externer Bremswiderstand, resp. Ballastwiderstand

Beim Abbremsen wandeln Motoren dynamische Energie in elektrische Energie zurück an den Zwischenkreis. Dies führt zu einem Ansteigen der Zwischenkreisspannung. Über einen externen Bremswiderstand kann der Servo-Drive überschüssige Energie im Widerstand verheizen und verhindert damit, dass die Zwischenkreisspannung zu hoch wird.



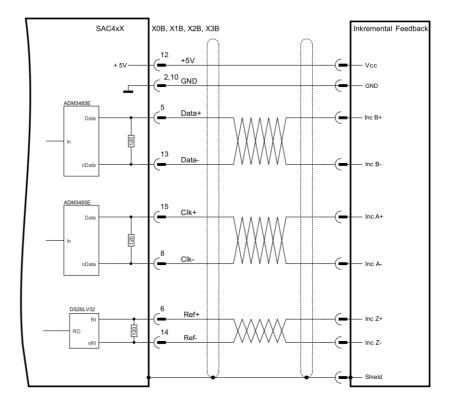
9.10. Feedbacks


9.10.1. SinCos Feedback

- Anschluss von Standard SinCos Feedback mit 1 V_{RMS}
- · Speisung des Positionsgebers über den Servo-Drive
- 16 Bit ADC Messung der Positionssignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus bzw. Cosinus Schwingung

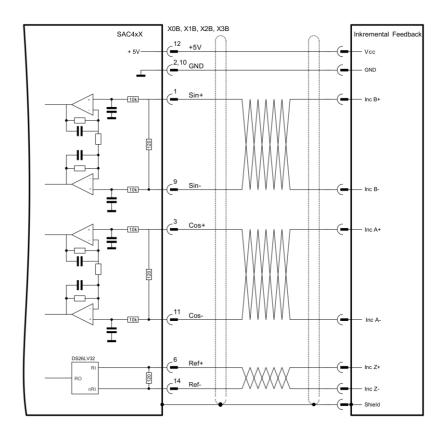
9.10.2. Resolver Feedback

9.10.3. Inkrementalgeber Feedback


Inkrementalgeber können auf zwei unterschiedliche Arten an dem Servo-Drive angeschlossen werden. Am SinCos- oder am Absolutwert- Interface. Der Unterschied liegt dabei in der Signalabtastrate und somit bei der maximal möglichen Signalfrequenz des Inkrementalgebers. Je nach Auflösung und vorkommende Geschwindigkeiten werden die Maximalwerte überschritten.

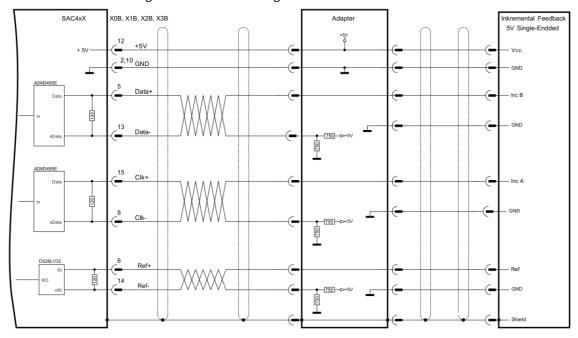
Es wird empfohlen den Inkrementalgeber wenn möglich immer an dem Absolutwert Feedback anzuschliessen.

9.10.3.1 Anschluss an Absolutwert Interface

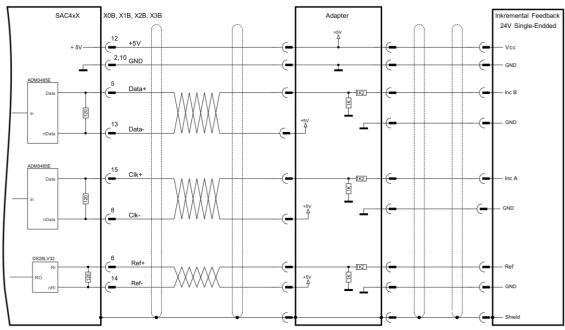

- · Maximale Signalgrenzfrequenz am Eingang liegt bei 2.5 MHz
- · RS422 Standard mit 120Ω Abschlusswiderstand
- · Anschluss von Single-Ended Inkrementalgeber siehe Kapitel 9.10.3.3 auf Seite 137

9.10.3.2 Anschluss an SinCos Interface

- · Maximale Signalgrenzfrequenz am Eingang liegt bei 200 kHz
- · RS422 Standard mit 120Ω Abschlusswiderstand
- · Anschluss von Single-Ended Inkrementalgeber siehe Kapitel 8.9.3.3 auf Seite 137


9.10.3.3 Anschluss von Single-Ended Inkrementalgeber

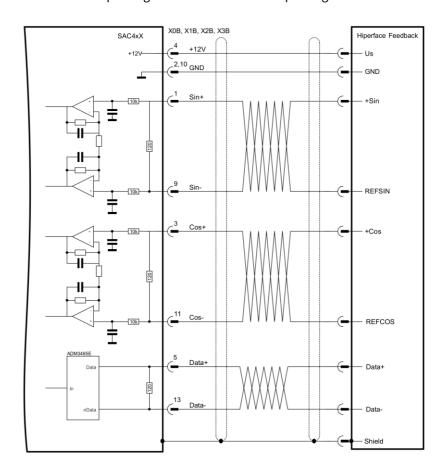
Für den Anschluss von Inkrementalgeber welche ein Single-Ended Interface haben, muss eine Pegelanpassung vorgeschalten werden. Damit kann solch ein Encoder auch an dem Absolutwert-Interface betrieben werden. Der Adapter kann beispielsweise in den Stecker integriert werden. Der Encoder muss fähig sein den Strom für den 120Ω Abschlusswiderstand liefern zu können.



Indel empfiehlt die Verwendung von differenziellen Inkrementalgeber mit RS422 Interface nach heutigem Industriestandard.

Anschluss eines 5V Single-Ended Inkrementalgebers

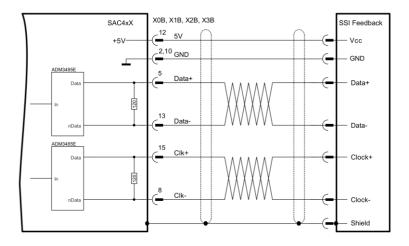
Anschluss eines 24V Single-Ended Inkrementalgebers



9.10.4. Absolutwert Feedbacks

9.10.4.1 Hiperface

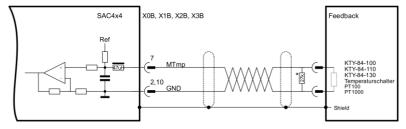

- · Unterstützung von Single turn und Multi turn Gebern
- 16 Bit ADC Messung der Analogsignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus / Cosinus Schwingung
- · Datenleitung nach RS422 / RS485 Standard
- · Direkte Speisung des Gebers mittels 12V Speisung

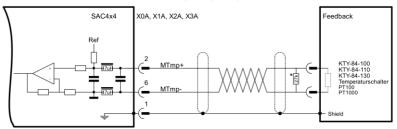

9.10.4.2 **EnDat 2.1**

- · Unterstützung von Single-Turn und Multi-Turn Gebern
- 16 Bit ADC Messung der Analogsignale
- · Verwertung von 12 Bit, also 4096 Werte pro Sinus / Cosinus Schwingung
- · Daten- und Clock-Leitung nach RS422 / RS485 Standard
- · Direkte Speisung des Gebers mittels 5V Speisung

9.10.4.3 **SSI / Biss C / EnDat 2.2**

9.10.5. **Temperatur Sensoren**


Temperatur Sensoren von Motoren können direkt an den Feedbacks angeschlossen werden.


Temperatur Sensoren welche in Motor-Leitungen verlegt sind, dürfen nicht auf die Feedback-Buchsen verdrahtet werden. Die Isolationsklasse der Buchsen erlauben max. 50V.

Der Sensor muss gegenüber Motorwicklung und Leitungen doppelt resp. verstärkt Isoliert sein.

· Anschluss an Feedback X1B, X2B, X3B, X4B

· Anschluss an Feedback X1A, X2A, X3A, X4A

* Für den Anschluss eines KTY-84-130 Sensors muss ein 27kΩ Widerstand parallelgeschaltet werden

9.11. Spannungsversorgung

9.11.1. Logikspeisung

Für die Logikversorgung der GIN-SAC4 Servo-Drives wird ein geregeltes 24V Netzteil mit genügend Leistungsreserven empfohlen. Ausserdem müssen geeignete Netzfilter eingesetzt werden.

Für sicherheitsgerichtete 24 V Spannungsversorgungen muss der maximale Strom auf 6 A begrenzt werden. Bei Spannungsausfall der 24 V Spannungsversorgung kann der Motor austrudeln. Falls dies nicht zulässig ist, müssen externe Massnahmen ergriffen werden, um ein Austrudeln der Achse zu verhindern.

Damit die elektrischen Werte für Kleinspannung mit sicherer Trennung auf den Sicherheitsmodulen nicht überschritten werden können, dürfen ausschliesslich 24 Volt Netzteile eingesetzt, die den PELV-/SELV-Bestimmungen gemäss EN 50178 und EN 60204 entsprechen.

9.11.2. Netzanschluss

Der Betrieb der Indel GIN-SAC4 Servo-Drives ist nur an geerdeten TN-, TT-Netzen erlaubt.

Der Betrieb an Delta-Netzen (TN-S Netze mit geerdeter Phase) oder IT-Netzen (isolierte Erde) ist nicht erlaubt. Für einen Betrieb an Netzen ausser TN oder TT ist ein Trenntransformator einzusetzen, wobei der sekundärseitige Sternpunkt geerdet werden muss.

Für den Betrieb ist eine Absicherung und ein Netzfilter vorgeschrieben.

Die Netzeinspeisung muss mit einem Netzfilter versehen werden, damit die EMV Grenzwerte für Störaussendung und Störfestigkeit nach EN61800-3 (Industrieumgebung) eingehalten werden können.

Die effektive Störaussendung einer Maschine ergibt sich aus dem Zusammenspiel aller verwendeten Komponenten. Insbesondere auch den Motoren, die Länge und Kapazität der Motorenkabel, sowie der Belastung des Reglers ab.

Allenfalls ist eine Emissionsmessung in der Anwendung erforderlich um die Einhaltung entsprechender Produktnormen sicherzustellen.

9.12. Verdrahtung

9.12.1. Leiterquerschnitte SAC4

Die Leiterquerschnitte sind als Richtwerte zu betrachten und sind immer den gegebenen Umständen wie Kabellänge und Leistungen anzupassen

Anschluss	Querschnitt	Тур
Netzeinspeisung	4 mm ²	600V, 105°C
DC-Zwischenkreis Ballastwiderstand	4 mm ²	600V, 105°C, abgeschirmt
Motorleitungen bis 20m	2.5 mm ²	600V, 105°C, geschirmt, Kapazität < 150pF/m
Resolver	0.25 mm ²	doppelt geschirmt paar. verdrillt, Kapazität < 120pF/m
SinCos	0.25 mm ²	doppelt geschirmt paar. verdrillt, Kapazität < 120pF/m
Encoder	0.25 mm ²	geschirmt, paar. verdrillt, Kapazität < 120pF/m
Haltebremse	0.75 mm ²	600V, 105°C, geschirmt
Logikspeisung	max 2.5 mm ²	60 V
Digitale IOs	max 2.5 mm ²	60 V

9.12.2. Kabelführung von Motorleitungen

Motorleitungen müssen getrennt von Signal- und Netzleitung verlegt werden. Motorleitungen nicht über Klemmen führen. Falls nötig metallische Steckverbinder verwenden. Motorenkabel sind zwingend mit geschirmten Leitungen zu verlegen. Der Schirm der Motorleitungen muss im Stecker rundum kontaktierend befestigt werden.

Siehe auch Dokumentationen INDEL-Verdrahtungsrichtlinie und INDEL-Aufbaurichtlinie.

9.12.3. Kabelführung der sicheren Ein- und Ausgänge

Für die Kabelführung der sicheren, digitalen Ein- und Ausgänge sind die Sicherheitshinweise in Kapitel 5 zu beachten.

9.12.4. Kabelführung von SinCos-, Inkremental- und Resolver-Leitungen

Die Signale von Resolver und SinCos Feedback-Systeme sind äusserst störanfällig. Deshalb müssen diese Leitungen mit einem paarverdrillten und doppelt abgeschirmten Kabel verlegt werden. Inkrementalgeber müssen mit geschirmten Kabeln verdrahtet werden. Der Schirm muss immer beidseitig aufgelegt werden.

Sämtliche Geberkabel dürfen nicht aufgetrennt werden, um über Klemmen in den Schaltschrank zu gelangen. Die D-SUB Stecker der Geberkabel müssen am Servo-Drive festgeschraubt werden. Die Schirme müssen an den metallischen Steckergehäusen befestigt werden.

9.12.5. Potentialausgleich

Alle Schirme müssen immer beidseitig aufgelegt werden. Um ungewollte Ableitströme über die Schirmung zu vermeiden, muss gegebenenfalls ein Potenzialausgleichsleiter vorgesehen werden. Insbesondere bei grösseren Distanzen oder bei verschiedener Einspeisung. Siehe auch Indel Verdrahtungs-Richtlinie

9.12.6. Schutzleiteranschluss

Der Schutzleiter muss gemäss EN 61800-5-1 ausgelegt werden.

Querschnitt S der Aussenleiter [mm²]	Mindestquerschnitt des dazugehörigen Schutzerdungsleiters [mm2]
S≤16	S
16 < S ≤ 35	16
35 < S	S/2

9.13. Motorüberlastschutz

Der Motor muss vom Anwender vor Überlast geschützt werden. Ein zusätzlicher Überlastschutz für Motoren mittels Temperaturfühler ist vorgesehen. Es liegt in der Verantwortung des Anwenders diesen Überlastschutz anzuwenden.

Der Motorenüberlastschutz ist nicht funktional sicher ausgeführt.

9.13.1. I²t Abschaltung

Ein zusätzlicher Schutz gegen Überlastung des bietet die I2t Abschaltung. weitere Details dazu im Inbetriebnahme-Manual.

9.13.2. Ballastwiderstand resp. Bremswiderstand

Der Ballastwiderstand muss gegen thermische Überlast gesichert sein. Am Ballastwiderstand können Spannungen von bis zu 800V entstehen. Der Ballastwiderstand muss dafür ausgelegt sein.

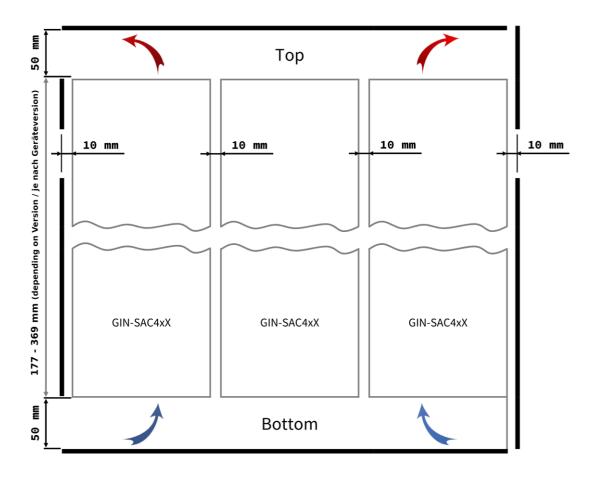
Die Ansteuerung des Bremswiderstandes ist nicht funktional sicher ausgeführt.

Der Bremswiderstand muss über ein abgeschirmtes Kabel mit dem nötigen Aderquerschnitt angeschlossen werden. Die Anforderung an den Querschnitt ergeben sich aus der maximalen Bremsleistung der Anwendung.

10. Mechanische Installation

10.1. Hinweise

Folgende Hinweise müssen vom Anwender beachtet und eingehalten werden.

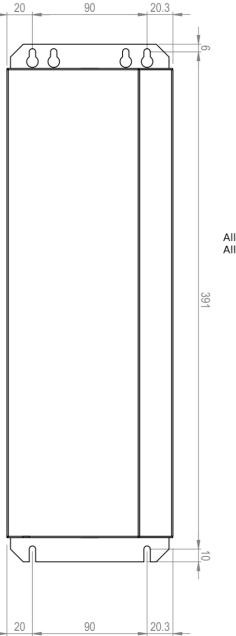

- · Die Montage muss mit geeignetem Werkzeug erfolgen
- · Die Montage der Geräte darf nur im spannungsfreien Zustand erfolgen.
- Es muss für genügend Kaltluftzufuhr von unten im Schaltschrank gesorgt werden
- · Die Luftzufuhr muss gefiltert werden damit keine Schmutzpartikel in die Drives gelangen können

Bei Verwendung von Kühlaggregaten muss folgendes beachtet werden

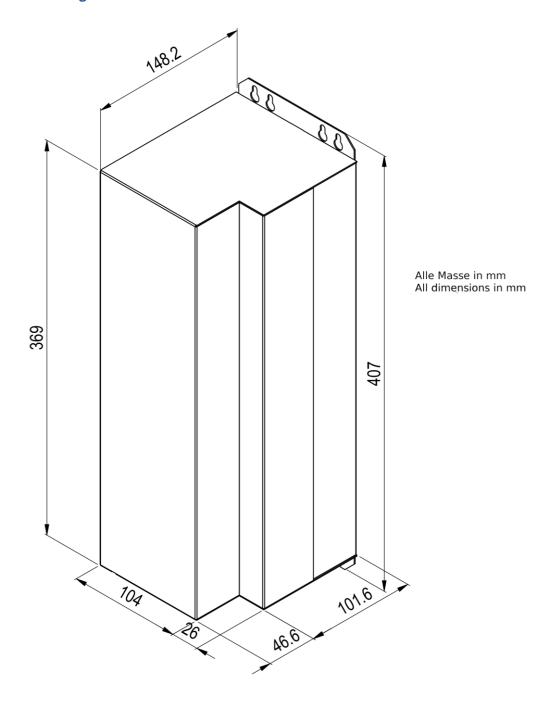
- Es muss dafür gesorgt werden, dass die ausströmende kalte Luft von Kühlaggregaten nicht direkt an die GIN-SAC4 Servo-Drives geblasen wird
- · Das Kondenswasser von Kühlaggregaten darf nicht in den Schaltschrank tropfen
- · Das Kondenswasser von Kühlaggregaten darf nicht auf elektrische, bzw. elektronische Bauteile tropfen

10.2. Montagevorschriften

Beim Betrieb ist auf ausreichend Kühlung bzw. Lüftung der Drives zu achten. Es sind die in Kapitel 8.4 aufgelisteten Umgebungsbedingungen einzuhalten. Die Drives müssen zwingend vertikal eingebaut werden. Die Abwärme der Drives wird durch die zwei integrierten Ventilatoren nach oben weggeblasen. Es sind die in nachfolgender Abbildung beschriebenen Minimalabstände einzuhalten.

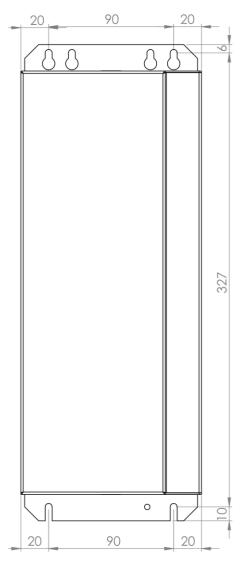


10.3. **GIN-SAC4x4**

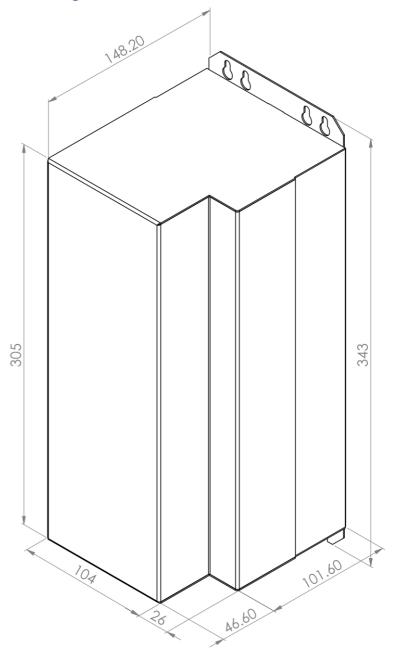

10.3.1. **Montage**

Die GIN-SAC4x4 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

10.3.2. Abmessung

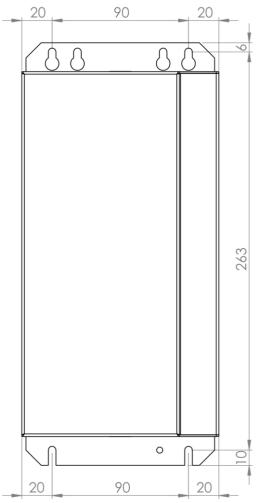


10.4. **GIN-SAC4x3**

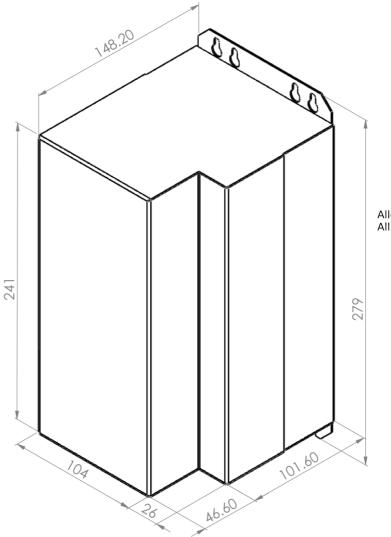

10.4.1. **Montage**

Die GIN-SAC4x3 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

10.4.2. Abmessung

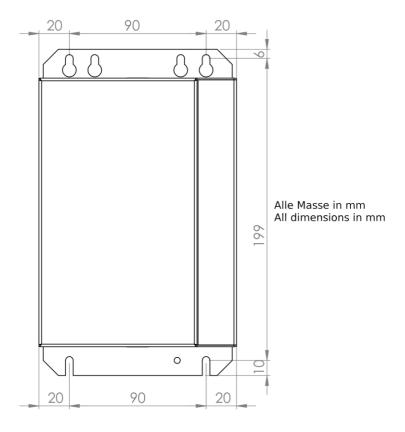


10.5. **GIN-SAC4x2**

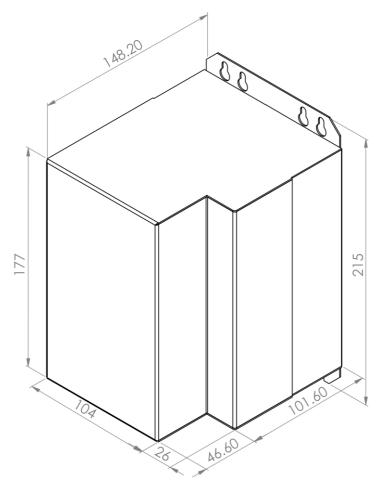

10.5.1. **Montage**

Die GIN-SAC4x2 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

10.5.2. Abmessung



10.6. **GIN-SAC4x1**


10.6.1. **Montage**

Die GIN-SAC4x1 Drives müssen mit mindestens vier M5 Zylinderschrauben befestigt werden. Es sollten immer die oberen zwei äusseren und die unteren zwei Befestigungslaschen verwendet werden.

10.6.2. Abmessung

Alle Masse in mm All dimensions in mm

11. Fehleranalyse

Grundsätzlich wird immer zwischen Warnungen und Errors unterschieden. Bei Auftretenden Warnungen ist der Regler prinzipiell weiter einsatzfähig und bleibt aktiv. Bei einem Error wird der Regler automatisch inaktiv geschalten und der Fehler muss in der Software quittiert werden bevor der Regler wieder aktiv geschalten werden kann.

11.1. Status-LED

Die GIN-SAC4 Servo-Drives haben diverse LEDs anhand welcher verschiedene Fehler und Warnungen abgelesen werden können. Für eine genaue Fehleranalyse sollte zusätzlich ein Indel Tool benutzt werden.

Kapitel noch nicht Vollständig!

LED	Blinkt gleich wie OK LED	Blink ca. 1.5- mal pro Se- kunde	Blinkt ca. 3-mal pro Sekunde	Leuchtet Konstant
	= OK LED	1[s]	1 [8]	t[s]
Ucc	1.1	1.2	1.3	1.4
Ballast			2.3	
Control			3.3	3.4
Ext Enable				4.4
IMAX / IGBT			5.3	5.4
PWM / Commu- tation	6.1		6.3	6.4
Resolver				7.4
Active				8.4
Motor		9.2	9.3	9.4

11.2. Fehlertabelle

Nr.	Art	Beschreibung	Mögliche Ursachen
1.1	Fehler	Zwischenkreisspannung U _{CC} ist kleiner als das konfigurierte U _{CC MIN}	Netzeinspeisung liegt nicht anNetzspannung zu tief
1.2	Warnung	Zwischenkreisspannung ist kleiner als U _{cc ok}	
1.3	Fehler	Zwischenkreisspannung ist grösser als U _{CC MAX}	 Ballast Ausgang funktioniert nicht Kein Ballastwiderstand ange- schlossen
1.4	ОК	Zwischenkreisspannung ist zwischen U _{CC MIN} und U _{CC MAX}	

Nr.	Art	Beschreibung	Mögliche Ursachen
2.3	Fehler	Ballastfunktion geht nicht. Die Zwischenkreisspannung U _{cc} wird nicht kleiner obwohl Ballastwiderstand eingeschalten ist	 Kein Ballastwiderstand ange- schlossen Fremdeinspeisung, U∝wird ge- brückt

Nr.	Art	Beschreibung	Mögliche Ursachen
3.3	Warnung	Endstufe ist Warm (ca. 85°C)	Hohe Auslastung und / oderSchlechte Kühlung des Reglers
3.4	Fehler	Endstufe ist zu heiss (ca. 100°C)	Hohe Auslastung und / oderSchlechte Kühlung des Reglers

Nr.	Art	Beschreibung	Mögliche Ursachen
4.4	OK	Extern Enable Signal liegt an	

Nr.	Art	Beschreibung	Mögliche Ursachen
5.3	Warnung	I ² t ist hoch (zwischen 100 und 110%) oder IMAX wird erreicht	 Motor braucht zu viel Strom I²t ist schlecht konfiguriert
5.4	Fehler	I²t ist überschritten (> 110%)	 Motor braucht zu viel Strom I²t ist schlecht konfiguriert

Nr.	Art	Beschreibung	Mögliche Ursachen
6.1	Warnung	PWM Modulation erreicht 100%	 Zwischenkreisspannung reicht nicht für geforderte Drehzahl
6.3	Fehler	Maximale mechanische Drehzahl erreicht	 Motor dreht schneller als in Speed Max zugelassen
6.4	Fehler	Autokommutierung fehlgeschlagen	Falsche KonfigurationMechanisches Problem

Nr.	Art	Beschreibung	Mögliche Ursachen
7.4	Fehler	Pegel des Resolvers oder SinCos ist ausserhalb des Sin ² Cos ² _{Min} und Sin ² Cos ² _{Max} Bereichs	 Kabelunterbruch des Feedbacks Verschmutzter SinCos Massstab Abstand zwischen Sensor und Massstab zu gross oder zu klein

Nr.	Art	Beschreibung	Mögliche Ursachen
8.4	OK	Achse ist aktiv geschaltet und re-	
		gelt	

Nr.	Art	Beschreibung	Mögliche Ursachen
9.2	Warnung	Motortemperatur ist höher als kon-	· Motor zu heiss
		figurierte Temperatur Warnung	
9.3	Fehler	Motortemperatur ist höher als kon-	· Motor zu heiss
		figurierte Temperatur Maximum	
9.4	Fehler	Überstrom oder Kurzschluss	 Motor überlastet (zu grosse
			Last)
			 Kurzschluss im Motor oder
			Verdrahtung
			 Endstufe defekt

12. Weiterführende Dokumente

12.1. EG-Konformitätserklärung für GIN-SAC4xX FS

Die aktuelle EG-Konformitätserklärung ist unter folgendem Link zu finden:


https://www.indel.ch/de/dokumente#konformitaet

12.2. CB Test Zertifikat

13. Normen

Folgende Normen sind angewendet worden und gelten für den Einsatz von GIN-SAC4xX FS Geräten.

EN 60204-1: 2018

Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen

EN ISO 13850: 2015

Sicherheit von Maschinen -Not-Halt - Gestaltungsleitsätze

IEC 61131-2: 2007

Programmable controllers - Part 2: Equipment requirements and tests

EN 61800-5-1: 2022 + COR1:2023

Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl – Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen

EN 61800-5-2: 2016

Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl – Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit

EN 61800-3: 2022

Drehzahlveränderbare elektrische Antriebe – Teil 3:, EMV-Anforderungen einschliesslich spezieller Prüfverfahren

IEC 61784: 2012

Industrielle Kommunikationsnetze – Profile – Teil 3: Funktional sichere Übertragung bei Feldbussen - Allgemeine Regeln und Profilfestlegungen – Teil 5-2: Feldbusinstallation – Installationsprofile für die Kommunikationsprofilfamilie 2

EN 61496-1: 2014

Sicherheit von Maschinen – Berührungslos wirkende Schutzeinrichtungen – Teil 1: Allgemeine Anforderungen und Prüfungen, Version Mai 2014

EN ISO 13849-1: 2023; EN ISO 13849-2: 2013

Sicherheit von Maschinen – Sicherheitsbezogene Teile von Steuerungen - Teil1: Allgemeine Gestaltungsleitsätze; Teil2: Validierung

EN 62061: 2021

Sicherheit von Maschinen – Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme.

EN 61508 Teile 1-7: 2010 ED II

Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer, programmierbarer elektronischer Systeme Teil 1-7

EN 61326-3-1: 2017

Elektrische Mess-, Steuer-, Regel- und Laborgeräte- EMV-Anforderungen – Teil 3-1: Störfestigkeitsanfordrungen für sicherheitsbezogene Systeme und für Geräte, die für sicherheitsbezogene Funktionen vorgesehen sind (Funktionale Sicherheit) – Allgemeine Anwendungen,

Reihe SN 29500 Teil 1-14: 1998

Ausfallrate Bauelement, Erwartungswert für ..., Zuverlässigkeit

EN 50178: 1998

Ausrüstung von Starkstromanlagen mit elektrischen Betriebsmitteln

BGIA-Papier: 2012

EMV und Funktionale Sicherheit für Leistungsantriebe mit integrierten Sicherheitsfunktionen

EN 60947-5-1: 2017

Niederspannungsschaltgeräte – Teil 5-1: Steuergeräte und Schaltelemente – Elektromechanische Steuergeräte

DIN EN 60664-4: 2006 +AC:2007

Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen - Teil 4: Berücksichtigung von hochfrequenten Spannungsbeanspruchungen